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About These Lectures

If you want to learn the most fundamental things about plasma as-
trophysics with the least amount of time and effort – and who
doesn’t? – this text is for you.

The textbook is addressed to students without a background in
plasma physics.

It grew from the lectures given at the Moscow Institute of Physics
and Technics (the ‘fiz-tekh’) since 1977.

A similar full-year course was offered to the students of the As-
tronomical Division in the Faculty of Physics at the Moscow State
University over the years after 1990.

The idea of the book is not typical for the majority of textbooks.

It was suggested by S.I. Syrovatskii that

the consecutive consideration of physical principles, start-
ing from the most general ones, and of simplifying assump-
tions gives us a simpler description of plasma under cosmic
conditions.

On the basis of such an approach the student interested in modern
astrophysics, its current practice, will find the answers to two key
questions:

1. What approximation is the best one (the simplest but sufficient)
for description of a phenomenon in astrophysical plasma?
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6 About These Lectures

2. How can I build an adequate model for the phenomenon, for
example, a flare in the corona of an accretion disk?

Practice is really important for the theory of astrophysical plasma.

Related exercises (supplemented to each chapter) serve to better
understanding of plasma astrophysics.

As for the applications, preference evidently is given to physical
processes in the solar plasma.

Why? – Because of the possibility of the all-round observational
test of theoretical models.

For instance, flares on the Sun, in contrast to those on other stars,
can be seen in their development.

We can obtain a sequence of images during the flare’s evolution,
not only in the optical and radio ranges but also in the EUV, soft and
hard X-ray, gamma-ray ranges.

It is assumed that the students have mastered a course of general
physics and have some initial knowledge of theoretical physics.

For beginning students, who may not know in which subfields of
astrophysics they wish to specialize,

it is better to cover a lot of fundamental theories thoroughly
than to dig deeply into any particular astrophysical subject
or object,

even a very interesting one, for example black holes.

Astrophysicists of the future will need tools that allow them to
explore in many different directions.

Moreover astronomy of the future will be, more than hitherto, pre-
cise science similar to mathematics and physics.

see http://www.springer/com/
http://adsabs.harvard.edu/
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Figure 1: The first vol-
ume of the book cov-
ers the basic princi-
ples and main prac-
tical tools required for
work in plasma astro-
physics.

The second volume “Plasma Astrophysics, Part II, Reconnection
and Flares” represents the basic physics of the magnetic reconnection
effect and the flares of electromagnetic origin in the solar system,
relativistic objects, accretion disks, their coronae.

Never say: “It is easy to show...”.
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Chapter 1

Particles and Fields: Exact
Self-Consistent Description

There exist two ways to describe exactly the behaviour of
a system of charged particles in electromagnetic and gravi-
tational fields.

1.1 Liouville’s theorem

1.1.1 Continuity in phase space

Let us consider a system of N interacting particle.

Without much justification, let us introduce the distribution func-
tion

f = f(r,v, t) (1.1)

for particles as follows.

We consider the six-dimensional (6D) space called phase space
X = { r,v} shown in Fig. 1.1.

The number of particles present in a small volume dX = d 3r d 3v
at a point X at a moment of time t is defined to be

dN(X, t) = f(X, t) dX. (1.2)

9



10 Chapter 1. Particles and Fields

v
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d X
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d
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v

r

X

Figure 1.1: The 6D phase space X. A small volume dX at a
point X.

Accordingly, the total number of the particles at this moment is

N(t) =
∫

f(X, t) dX ≡
∫ ∫

f(r,v, t) d 3r d 3v . (1.3)

If, for definiteness, we use the Cartesian coordinates, then

X = { x, y, z, vx, vy, vz }

is a point of the phase space (Fig. 1.2) and

Ẋ = { vx, vy, vz, v̇x, v̇y, v̇z } (1.4)

is the velocity of this point in the phase space.

Suppose the coordinates and velocities of the particles are chang-
ing continuously – ‘from point to point’, i.e. the particles move
smoothly at all times.

So the distribution function f(X, t) is differentiable.



1.1. Liouville’s Theorem 11

Moreover we assume that this motion of the particles in phase space
can be expressed by the continuity equation:

∂f

∂t
+ div

X
fẊ = 0

(1.5)

or
∂f

∂t
+ divr fv + divv f v̇ = 0 .

v

r0

X X

S

U

dS

.
J

Figure 1.2: The 6D phase space X. The volume U is enclosed
by the surface S.

Equation (1.5) expresses the conservation law for the particles,
since the integration of (1.5) over a volume U enclosed by the surface S
in Fig. 1.2 gives

∂

∂t

∫

U

f dX +
∫

U

div
X

fẊ dX =

by virtue of the Ostrogradskii-Gauss theorem



12 Chapter 1. Particles and Fields

=
∂

∂t
N(t)

∣∣∣∣
U

+
∫

S

fẊ dS =
∂

∂t
N(t)

∣∣∣∣
U

+
∫

S

J · dS = 0 . (1.6)

Here
J = fẊ (1.7)

is the particle flux density in the phase space.

Thus

a change of the particle number in a given volume U of the
phase space X is defined by the particle flux through the
boundary surface S.

The reason is clear.

There are no sources or sinks for the particles inside the volume.

Otherwise the source and sink terms must be added to the right-
hand side of Equation (1.5).

1.1.2 The character of particle interactions

Let us rewrite Equation (1.5) in another form in order to understand
the meaning of divergent terms.

The first of them is

divr fv = f divr v + (v · ∇r) f = 0 + (v · ∇r) f ,

since r and v are independent variables in the phase space X.

The second divergent term is

divv f v̇ = f divv v̇ + v̇ · ∇v f .

So far no assumption has been made as to the character of par-
ticle interactions.
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It is worth doing here.

Let us restrict our consideration to the interactions with

divv v̇ = 0 ,
(1.8)

then Equation (1.5) takes the following form

∂f

∂t
+ v · ∇r f +

F

m
· ∇v f = 0

or
∂f

∂t
+ Ẋ∇

X
f = 0 , (1.9)

where

Ẋ =
{

vx, vy, vz,
Fx

m
,

Fy

m
,

Fz

m

}
. (1.10)

So we ‘trace’ the phase trajectories of particles when they move
under action of a force field F(r,v, t).

Thus we have found Liouville’s theorem in the following formulation:

∂f

∂t
+ v · ∇r f +

F

m
· ∇v f = 0 . (1.11)

Liouville’s theorem: The distribution function remains
constant on the particle phase trajectories if condition (1.8)
is satisfied.

We call Equation (1.11) the Liouville equation.

The first term in Equation (1.11), the partial time derivative ∂f/∂t ,
characterizes a change of the distribution function f(t,X) at a given
point X in the phase space with time t.

Define also the Liouville operator
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D

Dt
≡ ∂

∂t
+ Ẋ

∂

∂X
≡ ∂

∂t
+ v · ∇r +

F

m
· ∇v . (1.12)

This operator is just the total time derivative following a particle mo-
tion in the phase space X.

By using definition (1.12), we rewrite Liouville’s theorem as follows:

Df

Dt
= 0 .

(1.13)

What factors do lead to the changes in the distribution function?

Let dX be a small volume in the phase space X.

v

r0

J

v

r0

Jr

v

Jr

Jv

v

FdX dX

(a) (b)

Figure 1.3: Action of the two different terms of the Liouville
operator in the 6D space X.

The second term in (1.11), v · ∇r f , means that the particles come
into and go out of the volume element dX because their velocities are
not zero (Fig. 1.3a).
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So this term describes a simple kinematic effect.

If the distribution function f has a gradient over r, then a
number of particles inside the volume dX changes because
they move with velocity v.

The third term, (F/m) ·∇v f , means that the particles escape from
the volume element dX or come into it due to their acceleration or
deceleration under action of the force field F (Fig. 1.3b).

1.1.3 The Lorentz force, gravity

In order the Liouville theorem to be valid, the force field F has to satisfy
condition (1.8).

We rewrite it as follows:

∂ v̇α

∂ vα

=
1

m

∂Fα

∂ vα

= 0

or

∂Fα

∂ vα

= 0 , α = 1, 2, 3 . (1.14)

In particular, this condition holds if

the component Fα of the force vector F does not depend upon
the velocity component vα.

This is a sufficient condition, of course.

The classical Lorentz force

Fα = e
[
Eα +

1

c
(v ×B )α

]
(1.15)

obviously has that property.
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The gravitational force in the classical approximation is entirely
independent of velocity.

Other forces are considered, depending on a situation, e.g., the
force resulting from the emission of radiation (the radiation reaction)
and/or absorption of radiation by astrophysical plasma.

These forces when they are important must be considered with ac-
count of their relative significance, conservative or dissipative charac-
ter, and other physical properties taken.

1.1.4 Collisional friction

As a contrary example we consider the collisional drag force which
acts on a particle moving with velocity v in plasma:

F = − k v , (1.16)

where the constant k > 0.

In this case the right-hand side of Liouville’s equation is not zero:

−f divv v̇ = −f divv
F

m
=

3k

m
f ,

because

∂ vα

∂ vα

= δαα = 3 .

Instead of Liouville’s equation we have

Df

Dt
=

3k

m
f > 0 . (1.17)

Thus the distribution function (i.e. the particle density) does not re-
main constant on particle trajectories but increases with time.

Along the phase trajectories, it increases exponentially:
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f(t, r,v) ∼ f(0, r,v) exp

(
3k

m
t

)
. (1.18)

The physical sense of this phenomenon is obvious.

The friction force decelerates the particles.

They go down in Fig. 1.4 and are concentrated in the vicinity of the
axis v = 0.

v

r0

F

Figure 1.4: Particle density increases in the phase space as a
result of action of the friction force F.
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1.1.5 The exact distribution function

Let us consider another property of the Liouville theorem.

We introduce the N -particle distribution function of the form

f̂(t, r,v) =
N∑

i=1

δ (r− ri(t)) δ (v − vi(t)) . (1.19)

The delta function of the vector-argument is defined as usually:

δ (r− ri(t)) =
3∏

α=1

δα =

= δ
(
rx − r i

x(t)
)

δ
(
ry − r i

y(t)
)

δ
(
rz − r i

z(t)
)
. (1.20)

We shall call function (1.19) the exact distribution function.

It is illustrated by Fig. 1.5.

X

f

<

Figure 1.5: The one-dimensional analogy of the exact distri-
bution function.

Let us substitute the exact distribution function in the Liouville
equation.

Action:
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∂

∂t
+ v · ∇r +

F

m
· ∇v ==> f̂ ==> = 0 .

The resulting three terms are

∂f̂

∂t
=

∑

i

(−1) δ ′α (r− ri(t)) ṙ i
α δ (v − vi(t)) +

+
∑

i

(−1) δ (r− ri(t)) δ ′α (v − vi(t)) v̇ i
α , (1.21)

v · ∇r f̂ ≡ vα
∂f̂

∂rα

=

=
∑

i

vα δ ′α (r− ri(t)) δ (v − vi(t)) , (1.22)

F

m
· ∇v f̂ ≡ Fα

m

∂f̂

∂vα

=

=
∑

i

Fα

mi

δ (r− ri(t)) δ ′α (v − vi(t)) . (1.23)

Here the index α = 1, 2, 3 or (x, y, z).

The prime denotes the derivative with respect to the argument of
a function.

The overdot denotes differentiation with respect to time t.

Summation over the repeated index α (contraction) is implied:

δ ′α ṙ i
α = δ ′x ṙ i

x + δ ′y ṙ i
y + δ ′z ṙ i

z .

The sum of terms (1.21)–(1.23) equals zero.

Let us rewrite it as follows
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0 =
∑

i

(
−ṙ i

α + v i
α

)
δ ′α (r− ri(t)) δ (v − vi(t)) +

+
∑

i

(
−v̇ i

α +
Fα

mi

)
δ (r− ri(t)) δ ′α (v − vi(t)) .

This can occur just then that all the coefficients of different combi-
nations of delta functions with their derivatives equal zero as well.

Therefore we find

d r i
α

dt
= v i

α(t) ,
d v i

α

dt
=

1

mi

Fα (ri(t),vi(t)) . (1.24)

Thus

the Liouville equation for an exact distribution function is
equivalent to the Newton set of equations for a particle mo-
tion, both describing a purely dynamic behavior of the par-
ticles.

It is natural since this distribution function is exact.

No statistical averaging has been done so far.

Statistics will appear later on when, instead of the exact descrip-
tion of a system, we begin to use some mean characteristics such as
temperature, density etc.

The statistical description is valid for systems containing a large
number of particles.

We have shown that finding a solution of the Liouville equation
for an exact distribution function
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Df̂

Dt
= 0

(1.25)

is the same as the integration of the motion equations.
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However

for systems of a large number of interacting particles, it is
much more advantageous to deal with the single Liouville
equation for the exact distribution function which describes
the entire system.

1.2 Charged particles in the electromagnetic field

1.2.1 General formulation of the problem

Let us recall the basic physics notations and establish a common basis.

Maxwell’s equations for the electric field E and magnetic field B
are well known to have the form:

rot B =
4π

c
j +

1

c

∂ E

∂t
, (1.26)

rot E = −1

c

∂ B

∂t
, (1.27)

div B = 0 , (1.28)

div E = 4πρ q . (1.29)

The fields are completely determined by electric charges and
electric currents.

Note that Maxwell’s equations imply:

• the continuity equation for electric charge (see Exercise 1.5)

• the conservation law for electromagnetic field energy (Exer-
cise 1.6).
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e1

0

ei

ri(t)
vi(t)

e
Nq

t
t

t

©©©©©©©©©* PPPq
t

t

t

t

Figure 1.6: A system of N charged particles.

Let there be N particles with charges e1, e2, . . . ei, . . . e
N
, coordi-

nates ri(t) and velocities vi(t), see Fig. 1.6.

By definition, the electric charge density

ρ q (r, t) =
N∑

i=1

ei δ (r− ri(t)) (1.30)

and the density of electric current

j (r, t) =
N∑

i=1

ei vi(t) δ (r− ri(t)) . (1.31)

The coordinates and velocities of particles can be found by integrat-
ing the equations of motion – the Newton equations:

ṙi = vi(t) , (1.32)

v̇i =
1

mi

ei

[
E (ri(t)) +

1

c
vi ×B (ri(t))

]
. (1.33)

Let us count the number of unknown quantities: the vectors
B, E, ri, and vi.

We obtain: 3 + 3 + 3N + 3N = 6 (N + 1).

The number of equations = 8 + 6N = 6 (N + 1) + 2.
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Therefore two equations seem to be unnecessary. Why is this
so?

1.2.2 The continuity equation for electric charge

At first let us make sure that the definitions (1.30) and (1.31) conform
to the conservation law for electric charge.

Differentiating (1.30) with respect to time gives

∂ρ q

∂t
= −∑

i

ei δ
′
α ṙ i

α . (1.34)

Here the index α = 1, 2, 3.
The prime denotes the derivative with respect to the argument of

the delta function.
The overdot denotes differentiation with respect to time t.

For the electric current density (1.31) we have the divergence

div j =
∂

∂rα

jα =
∑

i

ei v
i
α δ ′α . (1.35)

Comparing (1.34) with (1.35) we see that

∂ρ q

∂t
+ div j = 0 .

(1.36)

Therefore the definitions for ρ q and j conform to the continuity
equation.

As we shall see it in Exercise 1.5, conservation of electric charge
follows also directly from the Maxwell equations.

The difference is that above we have not used scalar Equation (1.29).
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1.2.3 Initial equations and initial conditions

Operating with the divergence on Equation (1.26)

Action:

div ==> rot B =
4π

c
j +

1

c

∂ E

∂t
,

and using the continuity Equation (1.36),

Action:

div j = − ∂ρ q

∂t
.

we obtain

0 =
4π

c

(
−∂ρ q

∂t

)
+

1

c

∂

∂t
div E .

Thus, we find that

∂

∂t
( div E− 4πρ q ) = 0 . (1.37)

Hence Equation (1.29) will be valid at any moment of time, pro-
vided it is true at the initial moment.

Let us operate with the divergence on Equation (1.27):

Action:

div ==> rot E = −1

c

∂ B

∂t
,

∂

∂t
div B = 0 . (1.38)

Equation (1.28) implies the absence of magnetic charges or, which is
the same, the solenoidal character of the magnetic field.

Conclusion. Equations (1.28) and (1.29) play the role of initial
conditions for the time-dependent equations
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∂

∂t
B = − c rot E (1.39)

and
∂

∂t
E = + c rot B− 4π j . (1.40)

Thus, in order to describe the gas consisting of N charged parti-
cles, we consider the time-dependent problem of N bodies with a given
interaction law.

The electromagnetic part of interaction is described by Max-
well’s equations, the time-independent scalar equations
playing the role of initial conditions for the time-
dependent problem.

Therefore the set consisting of eight Maxwell’s equations and 6N
Newton’s equations is neither over- nor under-determined.

It is closed with respect to the time-dependent problem, i.e. it
consists of 6 (N + 1) equations for 6 (N + 1) variables, once the initial
and boundary conditions are given.

1.2.4 Astrophysical plasma applications

The set of equations described above can be treated analytically in just
three cases:

1. N = 1 , the motion of a charged particle in a given electro-
magnetic field, e.g., drift motions and adiabatic invariants, wave-
particle interaction, particle acceleration in astrophysical plasma.

2. N = 2 , Coulomb collisions of two charged particles, i.e. binary
collisions.
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This is important for the kinetic description of physical processes,
e.g., the kinetic effects under propagation of accelerated parti-
cles in plasma, collisional heating of plasma by a beam of fast
electrons or/and ions.

3. N → ∞ , a very large number of particles.

This case is the frequently considered one in plasma astrophysics,
because it allows us to introduce macroscopic descriptions of
plasma, the widely-used magnetohydrodynamic (MHD) approxi-
mation.

Intermediate case:

Numerical integration of Equations (1.26)–(1.33) in the case of large
but finite N , like N ≈ 3×106, is possible by using modern computers.

The computations called particle simulations are increasingly
useful for understanding many properties of astrophysical plasma and
for demonstration of them.

One important example of a simulation is magnetic reconnection
in a collisionless plasma.

This process often leads to fast energy conversion from field energy
to particle energy, flares in astrophysical plasma (see Part II).
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Generalizations:

The set of equations described can be generalized to include consid-
eration of neutral particles.

This is necessary, for instance, in the study of the generalized
Ohm’s law which is applied in the investigation of physical processes
in weakly-ionized plasmas, e.g., in the solar photosphere and pro-
minences.

Dusty and self-gravitational plasmas in space are interesting in
view of the diverse and often surprising facts about planetary rings
and comet environments, interstellar dark space.

1.3 Gravitational systems

Gravity plays a central role in the dynamics of many astrophysical
systems – from stars to the Universe as a whole.

A gravitational force acts on the particles as follows:

mi v̇i = −mi∇φ . (1.41)

Here the gravitational potential

φ(t, r) = −
N∑

n=1

G mn

| rn(t)− r | , n 6= i , (1.42)

G is the gravitational constant.

We shall return to this subject many times, e.g., while studying the
virial theorem.

This theorem is widely used in astrophysics.

Though the potential (1.42) looks similar to the Coulomb potential
of charged particles,

physical properties of gravitational systems differ so much
from properties of astrophysical plasma.
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We shall see this fundamental difference in what follows.

1.4 Practice: Exercises and Answers

Exercise 1.1. Show that

any distribution function that is a function of the constants
of motion – the invariants of motion – satisfies Liouville’s
equation.

Answer.
A general solution of the equations of motion (1.24) depends on 6N

constants Ci where i = 1, 2, ... 6N .

If the distribution function is a function of these constants of the
motion

f = f ( C1, ... Ci, ... C6N ) , (1.43)

we rewrite the left-hand side of Equation (1.13) as

Df

Dt
=

6N∑

i=1

(
DCi

Dt

) (
∂f

∂Ci

)
. (1.44)

Because Ci are constants of the motion, DCi/Dt = 0.

Therefore the right-hand side of Equation (1.44) is also zero. Q.e.d.

This is the so-called Jeans theorem.

Exercise 1.2. Rewrite the Liouville theorem by using the Hamilton
equations.

Answer.

Rewrite the Newton set of equations (1.24) in the Hamilton form:

q̇α =
∂H

∂Pα

, Ṗα = −∂H

∂qα

, α = 1, 2, 3 . (1.45)
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Here H(P, q) is the Hamiltonian of a system, qα and Pα are the gen-
eralized coordinates and momenta, respectively.

Let us substitute the variables r and v in the Liouville equation by
the generalized variables q and P:

∂f

∂t
+∇P H · ∇q f −∇q H · ∇P f = 0 . (1.46)

Recall that the Poisson brackets for arbitrary quantities A and B
are defined to be

[ A , B ] =
3∑

α=1

(
∂A

∂qα

∂B

∂Pα

− ∂A

∂Pα

∂B

∂qα

)
. (1.47)

Applying (1.47) to (1.46), we find the final form of the Liouville
theorem

∂f

∂t
+ [ f , H ] = 0 .

(1.48)

Note that for a system in equilibrium

[ f , H ] = 0 . (1.49)

Exercise 1.3. Discuss what to do with the Liouville theorem, if it
is impossible to disregard quantum indeterminacy and assume that
the classical description of a system is justified.

Consider the case of dense fluids inside stars, for example, white
dwarfs.

Comment.

Inside a white dwarf star the temperature T ∼ 105 K, but the
density is very high: n ∼ 1028 − 1030 cm−3.

The electrons cannot be regarded as classical particles.
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We have to consider them as a quantum system with a Fermi-Dirac
distribution.

Exercise 1.4. Recall the Liouville theorem in a course of mechanics
– the phase volume of a system is independent of t.

Show that this formulation is equivalent to Equation (1.13).

Exercise 1.5. Show that Maxwell’s equations imply the continuity
equation for electric charge.

Answer.

Operating with the divergence on Equation (1.26),

Action:

div ==> rot B =
4π

c
j +

1

c

∂ E

∂t
,

we have

0 =
4π

c
div j +

1

c

∂

∂t
div E .

Substituting (1.29)

Comment:
(1.29) : div E = 4πρ q ,

in this equation gives us the continuity equation for the electric charge

∂

∂t
ρ q + div j = 0 . (1.50)

Exercise 1.6. Starting from Maxwell’s equations, derive the energy
conservation law for an electromagnetic field.

Answer.

Multiply Equation (1.26) by the electric field vector E and add it
to Equation (1.27) multiplied by the magnetic field vector B.

The result is
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∂

∂t
W = − j E− div G .

(1.51)

Here

W =
E2 + B2

8π
(1.52)

is the energy of electromagnetic field in a unit volume of space;

G =
c

4π
[E×B ] (1.53)

is the flux of electromagnetic field energy through a unit surface in
space, i.e. the Poynting vector.

The first term on the right-hand side of Equation (1.51) is the power
of work done by the electric field on all the charged particles in the unit
volume of space.

In the simplest approximation

evE =
d

dt
E , (1.54)

where E is the particle kinetic energy.

Hence instead of Equation (1.51) we write the following form of the
energy conservation law:

∂

∂t

(
E2 + B2

8π
+

ρv2

2

)
+ div

(
c

4π
[E×B ]

)
= 0 . (1.55)



Chapter 2

Statistical Description of
Interacting Particle Systems

In a system which consists of many interacting particles, the
statistical mechanism of ‘mixing’ in phase space works and
makes the system’s behavior on average more simple.

2.1 The averaging of Liouville’s equation

2.1.1 Averaging over phase space

As was shown above, the exact state of a system consisting of N in-
teracting particles can be given by the exact distribution function in
the 6D phase space X = { r,v}.

This function is the sum of δ-functions in N points of the phase
space:

f̂(r,v, t) =
N∑

i=1

δ (r− ri(t)) δ (v − vi(t)) . (2.1)

We use Liouville’s equation to describe the change of the system
state:

∂f̂

∂t
+ v · ∇r f̂ +

F

m
· ∇v f̂ = 0 . (2.2)

33
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Once the exact initial state of all the particles is known, it can be
represented by N points in the phase space (Fig. 2.1).

The motion of these points is described by Liouville’s equation.

v

r

X

1

2

N

Figure 2.1: Particle trajectories in the 6D phase space X.

In fact we usually know only some average characteristics of the
system’s state, such as the temperature, density, etc.

Moreover the behavior of each single particle is in general of no
interest.

For this reason, instead of the exact distribution function, let us
introduce the distribution function averaged over a small volume ∆X
of phase space at a moment of time t:

〈 f̂(r,v, t) 〉
X

=
1

∆X

∫

∆X

f̂(X, t) dX . (2.3)

The mean number of particles that present at a moment of time t
in an element of volume ∆X is

〈 f̂(r,v, t) 〉
X
·∆X =

∫

∆X

f̂(r,v, t) dX . (2.4)

Obviously the distribution function averaged over phase volume dif-
fers from the exact one (Fig. 2.2).
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X

X

f

f

X
<

<

>

<

(a)

(b)

Figure 2.2: The 1D analogy of the distribution function in
phase space X: (a) the exact distribution function (2.1),
(b) the averaged function (2.3).

2.1.2 Two statistical postulates

Let us average the exact distribution function (2.1) over a small time
interval ∆t centered at a moment of time t:

〈 f̂(r,v, t) 〉 t =
1

∆t

∫

∆t

f̂(r,v, t) dt . (2.5)

Here ∆t is small in comparison with the characteristic time of the sys-
tem’s evolution:

∆t ¿ τ ev . (2.6)

We assume that the following two statistical postulates are ap-
plicable to the system considered.

The first postulate:
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The mean values 〈 f̂ 〉
X

and 〈 f̂ 〉 t exist for sufficiently small
∆X and ∆t and are independent of the averaging scales ∆X
and ∆t.

Clearly the first postulate implies that the number of particles should
be large.

For a small number of particles the mean value depends upon the
averaging scale:

if, e.g., N = 1 then the exact distribution function (2.1) is simply a
δ-function, and the average over the variable X is

〈 f̂ 〉
X

= 1/∆X .

For illustration, the case (∆X) 1 > ∆X is shown in Fig. 2.3.

X

X

f

f

X
<

<

>

<

f
X

<
<

>

∆

X∆( )
1

f
X

<

<

>
1

Figure 2.3: Averaging of the exact distribution function f̂

which is equal to a δ-function.

The second postulate is

〈 f̂(X, t) 〉
X

= 〈 f̂(X, t) 〉 t = f(X, t) . (2.7)

The averaging of the distribution function over phase space is equiva-
lent to the averaging over time.
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While speaking of the small ∆X and ∆t, we assume that they are
not too small:

∆X must contain a reasonably large number of particles while

∆t must be large in comparison with the duration of drastic changes
of the exact distribution function, such as the duration of the particle
collisions:

∆t À τc . (2.8)

It is in this case that the statistical mechanism of particle ‘mixing’
in phase space is at work and

the averaging of the exact distribution function over the
time ∆t is equivalent to the averaging over the phase vol-
ume ∆X.

2.1.3 A statistical mechanism of mixing

Let us try to understand qualitatively how the mixing mechanism
works in phase space.

We start from the dynamical description of the N -particle system
in 6N -dimensional phase space in which

Γ = { ri, vi } , i = 1, 2, . . . N, (2.9)

a point is determined (t = 0 in Fig. 2.4) by the initial conditions of all
the particles.

The motion of this point is described by Liouville’s equation.

The point moves along a complicated dynamical trajectory be-
cause the interactions in a many-particle system are extremely intricate
and complicated.

The dynamical trajectory has a remarkable property.
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v

r
i

i

t = 0

∆

Γ

Γ

10
23

Figure 2.4: The dynamical trajectory of a system of N parti-
cles in the 6N -D phase space Γ.

Imagine a glass vessel containing a gas consisting of a large num-
ber N of particles.

The state of this gas at any moment of time is depicted by a single
point in the phase space Γ.

Let us imagine another vessel which is identical to the first one,
with one exception.

At any moment of time t, the gas state in the second vessel is
different from that in the first one.

These states are depicted by two different points in the space Γ.

For example, at t = 0, they are points 1 and 2 in Fig. 2.5.

With the passage of time, the gas states in both vessels change,
whereas the two points in the space Γ draw two different dynamical
trajectories (Fig. 2.5).

These trajectories do not intersect.

If they had intersected at just one point, then the state of the first
gas, determined by 6N numbers (ri,vi), would have coincided with the
state of the second gas.

These numbers could be taken as the initial conditions which, in
turn, would have uniquely determined the motion.
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v

r
i

i

t = 0

∆

Γ

Γ

1

2

1 2

Figure 2.5: The dynamical trajectories of two systems never
cross each other.

The two trajectories would have merged into one.

For the same reason the trajectory of a system cannot intersect
itself.

Thus we come to the conclusion that

only one dynamical trajectory of a many particle system
passes through each point of the phase space Γ.

Since the trajectories differ in initial conditions, we can introduce
an infinite ensemble of systems (glass vessels) corresponding to the
different initial conditions.

In a finite time the ensemble of dynamical trajectories will closely
fill the phase space Γ, without intersections.

By averaging over the ensemble we can answer the question:
what is the probability that, at a moment of time t, the system

will be found in an element ∆Γ = ∆ri ∆vi of the phase space Γ:

dw = 〈 f̂(ri,vi) 〉Γ d Γ. (2.10)
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Here 〈 f̂(ri,vi) 〉Γ is a function of all the coordinates and velocities.

It plays the role of the probability distribution density in the
phase space Γ and is called the statistical distribution function or simply
the distribution function.

∗ ∗ ∗

It is obvious that the same probability density can be obtained
in another way – through the averaging over time.

The dynamical trajectory of a system, given a sufficient large time ∆t,
will closely cover the space Γ.

Since the trajectory is very intricate, it will repeatedly pass through
the phase space element ∆Γ.

Let (∆t)
Γ

be the time during which the system locates in ∆Γ.

For a sufficiently large ∆t, which is formally restricted by the char-
acteristic time of evolution of the system as a whole, the ratio (∆t)

Γ
/∆t

tends to the limit

lim
∆t→∞

( ∆t )
Γ

∆t
=

dw

d Γ
= 〈 f̂(ri,vi, t) 〉 t . (2.11)

By virtue of the role of the probability density, it is clear that

the statistical averaging over the ensemble (2.10) is equiva-
lent to the averaging over time (2.11) as well as to the defini-
tion (2.5).

2.1.4 Derivation of a general kinetic equation

Now we have everything what we need to average the exact Liouville
equation

∂f̂

∂t
+ v · ∇r f̂ +

F

m
· ∇v f̂ = 0 .
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Since the equation contains the derivatives with respect to time t
and phase-space coordinates (r,v), the procedure of averaging is defined
as follows:

f(X, t) =
1

∆X ∆t

∫

∆X

∫

∆t

f̂(X, t) dX dt . (2.12)

Averaging the first term of the Liouville equation gives

1

∆X ∆t

∫

∆X

∫

∆t

∂f̂

∂t
dX dt =

1

∆t

∫

∆t

∂

∂t


 1

∆X

∫

∆X

f̂ dX


 dt =

=
1

∆t

∫

∆t

∂

∂t
f dt =

∂f

∂t
. (2.13)

In the last equality the use is made of the fact that, by virtue of the
second postulate, the averaging of a smooth averaged function does not
change it.

Let us average the second term in Equation (2.2):

1

∆X ∆t

∫

∆X

∫

∆t

vα
∂f̂

∂rα

dX dt =

=
1

∆X

∫

∆X

vα
∂

∂rα


 1

∆t

∫

∆t

f̂ dt


 dX =

=
1

∆X

∫

∆X

vα
∂

∂rα

f dX = vα
∂f

∂rα

. (2.14)

Here the index α = 1, 2, 3.

To average the term containing the force F, let us represent it as a
sum of a mean force 〈F 〉 and the force due to the difference of the
real force field from the mean (smooth) one:
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F = 〈F 〉+ F ′. (2.15)

Substituting (2.15) in the third term in Equation (2.2) and averaging
it, we have

1

∆X ∆t

∫

∆X

∫

∆t

Fα

m

∂f̂

∂vα

dX dt =

=
〈Fα 〉

m

1

∆X

∫

∆X

∂

∂vα


 1

∆t

∫

∆t

f̂ dt


 dX+

+
1

∆X ∆t

∫

∆X

∫

∆t

F ′
α

m

∂f̂

∂vα

dX dt =

=
〈Fα 〉

m

∂f

∂vα

+
1

∆X ∆t

∫

∆X

∫

∆t

F ′
α

m

∂f̂

∂vα

dX dt . (2.16)

Gathering all three terms together, we write the averaged Liouville
equation in the form

∂f

∂t
+ v · ∇r f +

〈F 〉
m

· ∇v f =

(
∂f̂

∂t

)

c

,

(2.17)

where

(
∂f̂

∂t

)

c

= − 1

∆X ∆t

∫

∆X

∫

∆t

F ′
α

m

∂f̂

∂vα

dX dt .

(2.18)
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Equation (2.17) and its right-hand side (2.18) are called the kinetic
equation and the collisional integral, respectively.

Thus we have found the most general form of the kinetic equa-
tion with a collisional integral, which cannot be directly used in plasma
astrophysics, without making some additional simplifying assump-
tions.

The main of them is the binary character of collisions.

2.2 A collisional integral and correlation functions

2.2.1 Binary interactions

The statistical mechanism of mixing in phase space makes particles
have no individuality.

However, we have to distinguish different kinds of particles, e.g.,
electrons and protons, because their behaviors differ.

Let f̂k (r,v, t) be the exact distribution function of particles of the
kind k

f̂k (r,v, t) =
Nk∑

i=1

δ (r− rki(t)) δ (v − vki(t)) , (2.19)

the index i denoting the ith particle of kind k, Nk being the number of
particles of kind k.

The Liouville equation for the particles of kind k takes a view

∂f̂k

∂t
+ v · ∇r f̂k +

F̂k

mk

· ∇v f̂k = 0 , (2.20)

mk is the mass of a particle of kind k.

The force acting on a particle of kind k at a point (r,v) of the phase

space X at a moment of time t, F̂k,α (r,v, t), is the sum of forces acting
on this particle from all other particles (Fig. 2.6):
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F̂ k,α (r,v, t) =
∑

l

Nl∑

i=1

F̂
(i)
kl,α (r,v, rli(t),vli(t)) . (2.21)

r

F
kl

r
li

(t)

e
li

e
k

x y

z

(i)
v

li
(t)

Figure 2.6: An action of
a particle e li located at
the point r li on a parti-
cle of kind k at a point r
at a moment of time t.

So the total force F̂k,α (r,v, t) depends upon the instant positions
and velocities of all the particles.

By using the exact distribution function, we rewrite formula (2.21)
as follows:

F̂ k,α (r,v, t) =
∑

l

∫

X1

F kl,α (X, X1) f̂l (X1, t) dX1 . (2.22)

Here

we assume that an interaction law Fkl,α (X, X1) is explicitly inde-
pendent of time t;

f̂l (X, t) is the exact distribution function of particles of kind l,

the variable of integration is designated as X1 = { r1,v1 } and dX1 =
d 3r1 d 3v1.
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Formula (2.22) takes into account that the forces considered
are binary ones, i.e. they can be represented as a sum of
interactions between two particles.

Making use of the representation (2.22), let us average the force
term in the Liouville equation, as this has been done in formula (2.16).

We have

1

∆X ∆t

∫

∆X

∫

∆t

1

mk

F̂ k,α (r,v, t)
∂f̂k

∂vα

dX dt =

=
1

∆X ∆t

∫

∆X

∫

∆t

∑

l

∫

X1

1

mk

F kl,α (X, X1) f̂l (X1, t)×

× ∂

∂vα

f̂k (X, t) dX dX1 dt =

=
1

∆X

∫

∆X

∑

l

∫

X1

1

mk

F kl,α (X, X1) ×

× ∂

∂vα


 1

∆t

∫

∆t

f̂k (X, t) f̂l (X1, t) dt


 dX dX1 . (2.23)

Here we have taken into account that the exact distribution func-
tion f̂l (X1, t) is independent of the velocity v, which is a part of the
variable X = { r, v } related to the particles of the kind k.

Formula (2.23) contains the pair products of exact distribu-
tion functions of different particle kinds, as is natural for the
case of binary interactions.
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2.2.2 Binary correlation

Let us represent the exact distribution function f̂k as

f̂k (X, t) = fk (X, t) + ϕ̂k (X, t) , (2.24)

where

fk (X, t) is the statistically averaged distribution function,

ϕ̂k (X, t) is the deviation of the exact distribution function from the
averaged one.

It is obvious that, according to (2.24),

ϕ̂k (X, t) = f̂k (X, t)− fk (X, t) ;

hence

〈 ϕ̂k (X, t) 〉 = 0 . (2.25)

Let us consider the integrals of pair products in the averaged
force term (2.23).

In view of definition (2.24), they can be rewritten as

1

∆t

∫

∆t

f̂k (X, t) f̂l (X1, t) dt =

= fk (X, t) fl (X1, t) + fkl (X, X1, t) , (2.26)

where

fkl (X,X1, t) =
1

∆t

∫

∆t

ϕ̂k (X, t) ϕ̂l (X1, t) dt . (2.27)

The function fkl is referred to as the correlation function or, more
exactly, the binary correlation function.

The physical meaning of the correlation function is clear from (2.26).
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The left-hand side of (2.26) means the probability to find a particle
of kind k at a point X of the phase space at a moment of time t under
condition that a particle of kind l places at a point X1 at the same
time.

By definition this is a conditional probability.

In the right-hand side of (2.26) the distribution function fk (X, t)
characterizes the probability that a particle of kind k stays at a point X
at a moment of time t.

The function fl (X1, t) plays the analogous role for the particles of
kind l.

If the particles of kind k did not interact with those of kind l,
then their distributions would be independent, i.e. probability
densities would simply multiply:

〈 f̂k (X, t) f̂l (X1, t) 〉 = fk (X, t) fl (X1, t) . (2.28)

So in the right-hand side of (2.26) there should be

fkl (X,X1, t) = 0 . (2.29)

There would be no correlation in the particle distribution.

We consider a system of interacting particles.

With the proviso that the parameter characterizing the binary in-
teraction, e.g., Coulomb collision considered below,

ζ i ≈ e2

〈 l 〉

/ 〈
mv2

2

〉
, (2.30)

is small under conditions in a wide range, the correlation function must
be relatively small.
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If the interaction is weak, the second term in the right-hand
side of (2.26) must be small in comparison with the first one.

This fundamental property allows us to construct a theory of plasma
in many cases of astrophysical interest.

2.2.3 The collisional integral and binary correlation

Now let us substitute (2.26) in formula (2.23) for the averaged force
term:

1

∆X ∆t

∫

∆X

∫

∆t

1

mk

F̂ k,α (X, t)
∂f̂k

∂vα

dX dt =

=
1

∆X

∫

∆X

∑

l

∫

X1

1

mk

F kl,α (X, X1)
∂

∂vα

[ fk (X, t) fl (X1, t) +

+ fkl (X, X1, t) ] dX dX1 =

since fk (X, t) is a smooth function, its derivative over vα can be brought
out of the averaging procedure:

=

[
∂

∂vα

fk (X, t)

]
×

×




1

∆X

∫

∆X

∑

l

∫

X1

1

mk

F kl,α (X,X1) fl (X1, t) dX dX1





+

+
1

∆X

∫

∆X

∑

l

∫

X1

1

mk

F kl,α (X,X1)
∂

∂vα

fkl (X, X1, t) dX dX1 =
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=
1

mk

F k,α (X, t)
∂fk (X, t)

∂vα

+

+
∑

l

∫

X1

1

mk

F kl,α (X, X1)
∂fkl (X, X1, t)

∂vα

dX1 . (2.31)

Here we have taken into account that the averaging of smooth functions
does not change them, and the following definition of the averaged
force is used:

F k,α (X, t) =
1

∆X

∫

∆X

∑

l

∫

X1

F kl,α (X,X1) fl (X1, t) dX dX1 =

=
∑

l

∫

X1

F kl,α (X, X1) fl (X1, t) dX1 . (2.32)

This definition coincides with the previous definition (2.16) of the av-
eraged force, since

all the deviations of the real force F̂k from the mean (smooth)
force Fk are taken care of in the deviations ϕ̂k and ϕ̂l of the
real distribution functions f̂k and f̂l from their mean values fk

and fl.

Thus the collisional integral is represented in the form

(
∂f̂k

∂t

)

c

= −∑

l

∫

X1

1

mk

F kl,α (X, X1)
∂fkl (X, X1, t)

∂vα

dX1 . (2.33)

Let us recall that for the Lorentz force as well as for the gravi-
tational one the condition

∂

∂vα

F kl,α (X, X1) = 0 (2.34)
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is satisfied.

So, we obtain from formula (2.33) the following expression

(
∂f̂k

∂t

)

c

= − ∂

∂vα

∑

l

∫

X1

1

mk

F kl,α (X, X1) fkl (X,X1, t) dX1 . (2.35)

Hence the collisional integral can be written in the divergent form
in the velocity space v :

(
∂f̂k

∂t

)

c

= − ∂

∂vα

J k,α ,

(2.36)

where the flux of particles of kind k in the velocity space is

J k,α (X, t) =
∑

l

∫

X1

1

mk

F kl,α (X, X1) fkl (X,X1, t) dX1 . (2.37)

Therefore the averaged Liouville equation or the kinetic equation
for particles of kind k

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα

+
F k,α (X, t)

mk

∂fk (X, t)

∂vα

=

= − ∂

∂vα

∑

l

∫

X1

1

mk

F kl,α (X,X1) fkl (X, X1, t) dX1 (2.38)

contains the unknown function fkl.

Hence the kinetic Equation (2.38) for distribution function fk is not
closed.

We have to find the equation for the correlation function fkl .
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2.3 Equations for correlation functions

To derive the equations for correlation functions, it is not necessary to
introduce any new postulates or develop new formalisms.

All the necessary equations and averaging procedures are at hand.

Looking at definition

fkl (X,X1, t) =
1

∆t

∫

∆t

ϕ̂k (X, t) ϕ̂l (X1, t) dt ,

where

ϕ̂k (X, t) = f̂k (X, t)− fk (X, t) ,

we see that we need an equation which will describe the deviation of
distribution function from its mean value, i.e. the function ϕ̂k = f̂k−fk.

In order to derive such equation, we simply have to subtract the
averaged Liouville equation

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα

+ ... = ...

from the exact Liouville equation (2.2)

∂f̂k

∂t
+ v · ∇r f̂k +

F̂k

mk

· ∇v f̂k = 0 .

The result is

∂ ϕ̂k (X, t)

∂t
+ vα

∂ ϕ̂k (X, t)

∂rα

+
F̂ k,α

mk

∂f̂k

∂vα

− F k,α

mk

∂fk

∂vα

=

=
∂

∂vα

∑

l

∫

X1

1

mk

F kl,α (X, X1) fkl (X,X1) dX1 . (2.39)

Here
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F̂ k,α (X, t) =
∑

l

∫

X1

F kl,α (X, X1) f̂l (X1, t) dX1 (2.40)

is the exact force (2.22) acting on a particle of the kind k, and

F k,α (X, t) =
∑

l

∫

X1

F kl,α (X,X1) fl (X1, t) dX1 (2.41)

is the statistically averaged force.

Considering that we need the equation for the pair correlation func-
tion

fkl (X1, X2, t) = 〈 ϕ̂k (X1, t) ϕ̂l (X2, t) 〉 ,

let us take two equations:

one for ϕ̂k (X1, t)

∂ ϕ̂k (X1, t)

∂t
+ v 1,α

∂ ϕ̂k (X1, t)

∂ r1,α

+ . . . = 0 (2.42)

and another for ϕ̂l (X2, t)

∂ ϕ̂l (X2, t)

∂t
+ v 2,α

∂ ϕ̂l (X2, t)

∂ r2,α

+ . . . = 0 . (2.43)

Now we add the equations resulting from (2.42) multiplied by ϕ̂l

and (2.43) multiplied by ϕ̂k.

We obtain

ϕ̂l
∂ ϕ̂k

∂t
+ ϕ̂k

∂ ϕ̂l

∂t
+ v 1,α

∂ ϕ̂k

∂ r1,α

ϕ̂l + . . . = 0

or
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∂ (ϕ̂k ϕ̂l)

∂t
+ v 1,α

∂ (ϕ̂k ϕ̂l)

∂ r1,α

+ v 2,α
∂ (ϕ̂k ϕ̂l)

∂ r2,α

+ . . . = 0 . (2.44)

On averaging Equation (2.44) we have the equation for the pair
correlation function:

∂fkl (X1, X2, t)

∂t
+

+ v 1,α
∂fkl (X1, X2, t)

∂ r1,α

+ v 2,α
∂fkl (X1, X2, t)

∂ r2,α

+

+
F k,α (X1, t)

mk

∂fkl (X1, X2, t)

∂ v 1,α

+
F l,α (X2, t)

ml

∂fkl (X1, X2, t)

∂ v 2,α

+

+
∂fk (X1, t)

∂ v 1,α

∑
n

∫

X3

1

mk

F kn,α (X1, X3) fnl (X3, X2, t) dX3 +

+
∂fl (X2, t)

∂ v 2,α

∑
n

∫

X3

1

ml

F ln,α (X2, X3) fnk (X3, X1, t) dX3 =

= − ∂

∂ v 1,α

∑
n

∫

X3

1

mk

F kn,α (X1, X3) fkln (X1, X2, X3, t) dX3 −

− ∂

∂ v 2,α

∑
n

∫

X3

1

ml

F ln,α (X2, X3) fkln (X1, X2, X3, t) dX3 . (2.45)

Here

fkln (X1, X2, X3, t) =
1

∆t

∫

∆t

ϕ̂k (X1, t) ϕ̂l (X2, t) ϕ̂n (X3, t) dt (2.46)

is the function of triple correlations.

Thus Equation (2.45) for the pair correlation function contains the
unknown function of triple correlations.
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In general,

the chain of equations for correlation functions is unclosed:
the equation for the correlation function of sth order contains
the function of the order (s + 1).

2.4 Practice: Exercises and Answers

Exercise 2.1. By analogy with formula (2.26), show that

〈 f̂k (X1, t) f̂l (X2, t) f̂n (X3, t) 〉 = (2.47)

= fk (X1, t) fl (X2, t) fn (X3, t) +

+ fk (X1, t) fln (X2, X3, t) + fl (X2, t) fkn (X1, X3, t) +

+ fn (X3, t) fkl (X1, X2, t) + fkln (X1, X2, X3, t) .

Exercise 2.2. Discuss a similarity and difference between the kinetic
theory presented in this Chapter and the famous BBGKY hierarchy the-
ory developed by Bogoliubov, Born and Green, Kirkwood, and Yvon.

Hint. Show that essential to both derivations is the weak-coupling
assumption, according to which

grazing encounters, involving small fractional energy and mo-
mentum exchange between colliding particles, dominate the
evolution of the velocity distribution function.

The weak-coupling assumption provides justification of the widely
appreciated practice which leads to a very significant simplification of
the original collisional integral.



Chapter 3

Weakly-Coupled Systems
with Binary Collisions

In a system of many interacting particles, the weak-coupling
assumption allows us to introduce a well controlled ap-
proximation to consider the chain of the equations for cor-
relation functions.

This leads to a significant simplification of the collisional
integral in astrophysical plasma but not in self-gravitating
systems.

3.1 Approximations for binary collisions

3.1.1 The small parameter of kinetic theory

The infinite chain of equations for the correlation functions does not
contain more information in itself than the Liouville equation for the
exact distribution function.

Actually, the statistical smoothing allows to lose ‘useless informa-
tion’ – the information about the exact motion of particles.

The value of the chain is that it allows a direct introduction of
new physical assumptions which make it possible to break the chain
off at some term (Fig. 3.1) and to estimate the resulting error.

55
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We call this procedure a well controlled approximation because
it looks, in a sense, similar to the Taylor expansion series.

LT KE

f
k

f
k

f
kl

< >
X

f
kln

...BC

Figure 3.1: How to break the infinite chain of the equations for
correlation functions? LT is the Liouville theorem for an
exact distribution function f̂k. KE and BC are the kinetic
Equation for fk etc.

There is no universal way of breaking the chain off.

It is intimately related, in particular, to the physical state of a
plasma.

Different states (as well as different aims) require different approx-
imations.

The physical state of a plasma can be characterized, at least par-
tially, by the ratio of the mean energy of two particle interaction to
their mean kinetic energy

ζ i ≈ e2

〈 l 〉

/ 〈
mv2

2

〉
,

If mean kinetic energy can be reasonably characterized by some
effective temperature T , then

ζ i ≈ e2

〈 l 〉 (k
B
T )−1 . (3.1)

As a mean distance between the particles we take

〈 l 〉 ≈ n−1/3 .
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Hence

ζ i =
e2

k
B

× n1/3

T
(3.2)

is termed the interaction parameter.

It is small for a sufficiently hot and rarefied plasma.

In many astrophysical plasmas, e.g., in the solar corona, the in-
teraction parameter is very small.

So

the thermal kinetic energy of plasma particles is much larger
than their interaction energy.

The particles are almost free or moving on definite trajectories in
the external fields if the later are present.

We call this case the approximation of weak Coulomb interaction.

While constructing a kinetic theory, it is natural to use the pertur-
bation procedure with respect to the small parameter ζ i.

This means that

the distribution function fk must be taken to be of order unity,
the pair correlation function fkl of order ζ i, the triple corre-
lation function fkln of order ζ 2

i , etc.

We shall see in what follows that this principle has a deep physical
sense in kinetic theory.

Such plasmas are said to be ‘weakly coupled’.

An opposite case, when the interaction parameter takes values larger
than unity, is dense, relatively cold plasmas, for example in the inte-
riors of white dwarf stars.

These plasmas are ‘strongly coupled’.
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3.1.2 The Vlasov kinetic equation

In the zeroth order with respect to the small parameter ζ i, we obtain the
Vlasov equation with the self-consistent electromagnetic field:

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα

+

+
ek

mk

(
E +

1

c
v ×B

)

α

∂fk (X, t)

∂vα

= 0 . (3.3)

Here E and B are the statistically averaged electric and magnetic
fields obeying Maxwell’s equations:

curl E = −1

c

∂ B

∂t
, div E = 4π ( ρ 0 + ρ q ) ,

(3.4)

curl B =
1

c

∂ E

∂t
+

4π

c
( j 0 + j q ) , div B = 0 .

ρ 0 and j 0 are the external charges and currents; they describe the
external fields, e.g., the uniform magnetic field B0.

ρ q and j q are the statistically smoothed charge and current due to
the plasma particles:

ρ q (r, t) =
∑

k

ek

∫

v

fk (r,v, t) d 3v , (3.5)

j q (r, t) =
∑

k

ek

∫

v

v fk (r,v, t) d 3v . (3.6)

Therefore the electric and magnetic fields are also statistically smoothed.

If we are considering processes which occur on a time scale much
shorter than the time of collisions,
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τ ev ¿ τc , (3.7)

we use a description which includes the averaged electric and mag-
netic fields but neglects the microfields responsible for binary
collisions.

This means that
F ′ = 0 ,

therefore the collisional integral is also equal to zero.

The Vlasov equation together with the definitions (3.5) and (3.6),
and with Maxwell’s Equations (3.4) is a nonlinear integro-differential
equation.

It serves as a classic basis for the theory of oscillations and waves
in a plasma with the small parameter ζ i .

The Vlasov equation is also a proper basis for theory of wave-
particle interactions in astrophysical plasma and collisionless shock
waves, collisionless reconnecting current layers.

3.1.3 The Landau collisional integral

Using the perturbation procedure with respect to the small parame-
ter ζ i in the first order, and neglecting the close Coulomb collisions,
we find the kinetic equation with the collisional integral given by Lan-
dau

(
∂f̂k

∂t

)

c

= − ∂

∂vα

J k,α , (3.8)

Here the flux of particles of kind k in the velocity space is

J k,α =
πe 2

k ln Λ

mk

∑

l

e 2
l

∫

vl

{
fk

∂fl

ml ∂ v l,β

− fl
∂fk

mk ∂ v k,β

}
×

× (u2 δαβ − uαuβ)

u3
d 3vl . (3.9)
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u = v − vl is the relative velocity, d 3vl corresponds to the integration
over the whole velocity space of ‘field’ particles l.

ln Λ is the Coulomb logarithm which takes into account divergence
of the Coulomb-collision cross-section.

The kinetic equation with the Landau integral is a nonlinear integro-
differential equation for the distribution function fk (r,v, t).

Two approaches correspond to different limiting cases.

The Landau integral takes into account the part of the particle
interaction which determines dissipation while the Vlasov
equation allows for the averaged field, and is thus reversible.

For example, in the Vlasov theory, the question of the role of colli-
sions in the neighbourhood of resonances remains open.

The famous paper by Landau (1946) was devoted to this problem.

Landau used the reversible Vlasov equation as the basis to study the
dynamics of a small perturbation of the Maxwell distribution function,
f (1)(r,v, t).

In order to solve the linearized Vlasov equation, he made use of the
Laplace transformation, and defined the rule to avoid a pole at

ω = k‖ v‖

in the divergent integral by the replacement

ω → ω + i 0 .

This technique for avoiding singularities may be formally replaced
by a different procedure.

Namely it is possible to add a small dissipative term−νf (1)(r,v, t)
to the right-hand side of the linearized Vlasov equation.

In this way, the Fourier transform of the kinetic equation involves
the complex frequency

ω = ω′ + i ν ,
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leading with ν → 0 to the same expression for the Landau damping.

Note, however, that

the Landau damping is not by collisions but by a transfer of
wave field energy into oscillations of resonant particles.

The Landau method is really a beautiful example of complex anal-
ysis leading to an important new physical result.

The second approach reduces the reversible Vlasov equation to an
irreversible one.

Although the dissipation is assumed to be negligibly small, one can-
not take the limit ν → 0 directly in the master equations: this can be
done only in the final formulae.

This method of introducing a collisional damping is natural.

It shows that

even very rare collisions play the principal role in the physics
of collisionless plasma.

3.1.4 The Fokker-Planck equation

The smallness of the interaction parameter signifies that, in the col-
lisional integral, the sufficiently distant Coulomb collisions are taken
care of as the interactions with a small momentum and energy
transfer.

For this reason, it comes as no surprise that the Landau integral
can be considered as a particular case of a different approach which is
the Fokker-Planck equation.

Let us consider a distribution function independent of space so
that f = f(v, t).
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The Fokker-Planck equation describes the distribution function evo-
lution due to nonstop overlapping weak collisions resulting in par-
ticle diffusion in velocity space:

∂f

∂t
=

(
∂f̂

∂t

)

c

= − ∂

∂vα

[ aαf ] +
∂2

∂vα ∂vβ

[ bαβ f ] . (3.10)

This equation coincides with the diffusion equation for some admix-
ture with concentration f , e.g., Brownian particles in a gas, on which
stochastic forces are exerted by the molecules of the gas.

The coefficient bαβ plays the role of the diffusion coefficient and is
expressed in terms of the averaged velocity change 〈 δvα 〉 in an elemen-
tary act – a collision:

bαβ =
1

2
〈 δvα δvβ 〉 . (3.11)

The other coefficient is

aα = 〈 δvα 〉 . (3.12)

It is known as the coefficient of dynamic friction.

A Brownian particle moving with velocity v through the gas expe-
riences a drag opposing the motion (Fig. 1.4).

In order to find the mean values appearing in the Fokker-Planck
equation, we have to make clear the physical and mathematical
sense of expressions (3.11) and (3.12).

The mean values of velocity changes are in fact statistically
averaged and determined by the forces acting between a test
particle and scatterers (field particles or waves).

For test particles interacting with the thermal electrons and ions
in a plasma, such calculations give us the Landau integral.
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Thus one did not anticipate any major problems in rewriting the
Landau integral in the Fokker-Planck form.

The kinetic equation found in this way will allow us to study the
Coulomb interaction of accelerated particle beams with astrophysical
plasma.

Collisional friction slows down the particles of the beam and
moves them toward the zero velocity in the velocity space (Fig. 3.2).

Diffusion disperses the distribution of beam particles in the veloc-
ity space.

v

f

0 ||

( )v || t = 0

t >0

Figure 3.2: A beam of fast
particles in plasma. We
illustrate only the ef-
fects of Coulomb colli-
sions.

During the motion of a beam of fast particles in a plasma a reverse
current of thermal electrons is generated, which tends to compensate
the electric current of fast particles – the direct current.

The electric field driving the reverse current makes a great
impact on the particle beam kinetics.

That is why, in order to solve the problem of accelerated particle
propagation in, for example, the solar atmosphere, we inevitably have
to apply a combined approach.

This takes into account both the electric field influence on the accel-
erated particles (as in the Vlasov equation) and their scattering from
the thermal particles of a plasma.
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3.2 Correlations and Debye-Hückel shielding

We are going to understand the most fundamental property of the bi-
nary correlation function.

With this aim, we shall solve the second equation in the chain
illustrated by Fig.

KE

f
k

f
kl f

kln

...BC

??

Here BC is the Equation (2.45) for the correlation function f kl.

To determine and to solve this equation we have to know two func-
tions:

the distribution function fk from the first link in the chain and

the triple correlation function fkln from the third link.

3.2.1 The Maxwellian distribution function

Let us consider the stationary (∂/∂t = 0) solution to the equations for
correlation functions, assuming the interaction parameter ζ i to be small
and using the successive approximations in the following form.

First, we set
fkl = 0

in the kinetic equation.

Second, we assume that the triple correlation function

fkln = 0
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in Equation (2.45) for the correlation function fkl etc.

The plasma is supposed to be stationary, uniform and in the
thermodynamic equilibrium state, i.e. the velocity distribution is
assumed to be a Maxwellian function

fk (X) = fk (v2) = ck exp

(
− mk v2

2k
B
Tk

)
. (3.13)

The constant ck is determined by the normalizing condition and equals

ck = nk

(
mk

2π k
B
Tk

)3/2

.

It is obvious that the Maxwellian function satisfies the kinetic equa-
tion under assumptions made above if the averaged force is equal
to zero:

F k,α(X, t) = F k,α(X) = 0 . (3.14)

Since we shall need the same assumption in the next Section, we
shall justify it there.

3.2.2 The averaged force and electric neutrality

Let us substitute the Maxwellian function in the kinetic equation, ne-
glecting all the interactions except the Coulomb ones.

We obtain the following expression for the averaged force:

F k,α (X1) =
∑

l

∫

X2

F kl,α (X1, X2) fl (X2) dX2 =

since plasma is uniform, fl does not depend of r2

=
∑

l

∫

r2

F kl,α (r1, r2) d 3r2 ·
∫

v2

fl (v2) d 3v2 =
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= −
∫

r2

∑

l

∂

∂r1,α

(
ek el

| r1 − r2 |

)
d 3r2 · nl =

= −
∫

r2

∂

∂r1,α

(
ek

| r1 − r2 |

)
d 3r2 ·

∑

l

nl el . (3.15)

Therefore

F k,α = 0 , (3.16)

if the plasma is assumed to be electrically neutral:

∑

l

nl el = 0 .

(3.17)

Balanced charges of ions and electrons determine the name
plasma according Langmuir (1928).

So the averaged (statistically smoothed) force (2.32) is equal to zero
in the electrically neutral plasma but is not equal to zero in a system
of charged particles of the same charge sign: positive or negative, it
does not matter.

Such a system tends to expand.

There is no neutrality in gravitational systems like stellar clus-
ters.

The large-scale gravitational field makes an overall thermody-
namic equilibrium impossible.

Moreover, on the contrary to plasma, they tend to contract and
collapse.
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3.2.3 Pair correlations and the Debye-Hückel radius

As a first approximation, on putting the triple correlation function

fkln = 0 ,

we obtain from Equation (2.45), in view of condition (3.16), the follow-
ing equation for the binary correlation function fkl :

v 1,α
∂fkl

∂ r1,α

+ v 2,α
∂fkl

∂ r2,α

=

= −∑
n

∫

X3

{
1

mk

F kn,α (X1, X3) fnl (X3, X2)
∂fk

∂ v 1,α

+

+
1

ml

F ln,α (X2, X3) fnk (X3, X1)
∂fl

∂ v 2,α

}
dX3 . (3.18)

Let us consider the particles of two kinds: electrons and ions, as-
suming the ions to be motionless and homogeneously distributed.

Then the ions do not take part in any kinetic processes.

Hence

ϕ̂ i ≡ 0

for ions; and the correlation functions associated with ϕ̂ i equal zero
too:

f ii = 0 , fei = 0 etc. (3.19)

Among the pair correlation functions, only one has a non-zero
magnitude

fee (X1, X2) = f (X1, X2) . (3.20)

Taking into account (3.19), (3.20), and (3.13), rewrite Equation (3.18)
as follows
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v1
∂f

∂ r1

+ v2
∂f

∂ r2

=

=
1

k
B
T

∫

X3

[v1 · F (X1, X3) f (X3, X2) fe (v1) +

+ v2 · F (X2, X3) f (X1, X3) fe (v2) ] dX3 . (3.21)

Since v1 and v2 are arbitrary and refer to the same kind of particles
(electrons), (3.21) takes the form

∂f

∂ r1

=
1

k
B
T

∫

X3

F (X1, X3) f (X3, X2) fe (v1) dX3 . (3.22)

Taking into account the Coulomb force in the same approxima-
tion as (3.16) and assuming the correlation to exist only between the
positions of the particles in space (rather than between velocities), we
integrate both sides of (3.22) over d 3v1 d 3v2.

The result is

∂ g (r1, r2)

∂ r1

= − ne2

k
B
T

∫

r3

∇r1

1

| r1 − r3 | g (r2, r3) d 3r3 . (3.23)

Here the function

g (r1, r2) =
∫

v1

∫

v2

f (X1, X2) d 3v1 d 3v2 . (3.24)

We integrate Equation (3.23) over r1 and designate the function

g (r1, r2) = g (r 2
12) ,

where
r12 = | r1 − r2 | .
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So we obtain the equation

g (r 2
12) = − ne2

k
B
T

∫

r3

g (r 2
23)

r13

d 3r3 .

Its solution is

g (r) =
c 0

r
exp

(
− r

r
DH

)
, (3.25)

where

r
DH

=

(
k

B
T

4π ne2

)1/2

(3.26)

is the Debye-Hückel radius or, more exactly, the electron Debye-
Hückel radius.

The constant of integration

c 0 = − 1

4π r 2
DH

n
(3.27)

(Exercise 3.8).

Substituting (3.27) in solution (3.25) gives the sought-after pair cor-
relation function

g (r) = − 1

k
B
T

e2

r
exp

(
− r

r
DH

)
. (3.28)

This formula shows that

the Debye-Hückel radius is a characteristic length of the pair
correlations in a fully-ionized equilibrium plasma.

As one might have anticipated,

the binary correlation function reproduces the shape of the
actual potential of interaction, i.e. the shielded Coulomb
potential:
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g (r) ∼ ϕ (r) ∼ 1

r
exp

(
− r

r
DH

)
.

(3.29)

Astrophysical plasmas exhibit collective phenomena arising out
of mutual interactions of many particles.

Since the radius r
DH

is a characteristic length of pair correlations,
the number n r3

DH
gives us a measure of the number of particles which

can interact simultaneously.

The inverse of this number is the so-called plasma parameter

ζp =
(
n r 3

DH

)−1
. (3.30)

This is a small quantity as well as it can be expressed in terms of the
interaction parameter ζ i (Exercise 3.1).

In many astrophysical applications, the plasma parameter is really
small.

Thus, the number of particles inside the Debye-Hückel sphere is very
large (Exercise 3.2).

So

the collective phenomena can be really important in astro-
physical plasma in many places where it is weakly coupled.

3.3 Gravitational systems

A fundamental difference between the astrophysical plasmas and
the gravitational systems lies in the nature of the gravitational force:

there is no shielding to vitiate this long-range 1/r2 force.

The collisional integral formally equals infinity.
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The conventional wisdom of such systems asserts that they can
be described by the collisionless kinetic equation, the gravitational
analog of the Vlasov equation.

Comment:

∞ ==> 0 !!!

On the basis of what we have seen above,

the collisionless approach in gravitational systems, i.e. the
entire neglect of particle pair correlations, constitutes an un-
controlled approximation.

Unlike the plasma, we cannot derive the next order correction to the
collisionless equation in the perturbation expansion.

We may hope to circumvent this difficulty by first identifying the
mean field force 〈F 〉, acting at any given point in space and then
treating fluctuations F ′ away from the mean field force.

However this is difficult to implement concretely because of the ap-
parent absence of a clean separation of scales.

3.4 Comments on numerical simulations

The astrophysical plasma processes are typically investigated in well
developed and distinct approaches.

One approach, described by the Vlasov equation, is the collision-
less limit used when collective effects dominate.

In cases where the plasma dynamics is determined by collision-
al processes and where the self-consistent fields can be neglected, the
Fokker-Planck approach is used.

At the same time, it is known that
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both collective effects and Coulomb collisions can play an es-
sential role in a great variety of astrophysical phenomena.

Besides, collisions play the principal role in the physics of
collisionless plasma.

Taking collisions into account may lead not only to quantitative but
also qualitative changes in the plasma behavior.

Even in the collisionless limit, the kinetic equation is difficult for
numerical simulations, and the ‘macroparticle’ method is widely used
algorithms.

Instead of direct numerical solution of the kinetic equation, a set of
ordinary differential equations for every macroparticle is solved.

These equations are the characteristics of the Vlasov equation.

In the case of a collisional plasma, the position of a macroparticle
satisfies the usual equation of the collisionless case

ṙ ≡ d r

dt
= v(t) . (3.31)

However the momentum equation is modified owing to the Coulomb
collisions.

They are described by the Fokker-Planck operator (3.10) which in-
troduces a friction and diffusion in velocity space.

Thus it is necessary to find the effective collisional force Fc which
acts on the macroparticles:

v̇ ≡ dv

dt
=

1

m
(F

L
+ Fc) . (3.32)

The collisional force can be introduced phenomenologically but a more
mathematically correct approach can be constructed using the stochas-
tic equivalence of the Fokker-Planck and Langevin equations.

Stochastic differential equations are regarded as an alternative
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to the description of astrophysical plasma in terms of distribution func-
tion.

The Langevin approach allows one to overcome difficulties
related to the Fokker-Planck equation and to simulate actual
plasma processes, taking account of both collective effects and
Coulomb collisions.

Generally, if we construct a method for the simulation of complex
processes in astrophysical plasma, we have to satisfy the following ob-
vious but conflicting conditions.

First, the method should be adequate for the task in hand.

For a number of problems the simplified models of the collisional
integral can provide a correct description and ensure a desired accuracy.

Second, the method should be computationally efficient.

The algorithm should not be extremely time-consuming.

In practice, some compromise between accuracy and complex-
ity of the method should be achieved.

A ‘recipe’:

the choice of a particular model of the collisional integral is
determined by the importance and particular features of the
collisional processes in a given astrophysical problem.

3.5 Practice: Exercises and Answers

Exercise 3.1. Show that the interaction parameter ζ i is related to the
plasma parameter ζp as follows:

ζ i =
1

4π
ζ 2/3

p . (3.33)



74 Chapter 3. Weakly-Coupled Systems

Exercise 3.2. How many particles are inside the Debye-Hückel sphere
in plasma of the solar corona?

Answer.

For an electron-proton plasma with T ≈ 2 × 106 K and n ≈ 2 ×
108 cm−3, the Debye-Hückel radius

r
DH

=

(
kT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

≈ 0.5 cm . (3.34)

The number of particles inside the Debye-Hückel sphere

N
DH

= n
4

3
πr3

DH
∼ 108. (3.35)

Hence the typical value of plasma parameter in the corona is really
small:

ζ p ∼ 10−8 .

The interaction parameter is also small:

ζ i ∼ 10−6 .

Exercise 3.3. Estimate the interaction parameter (3.2) in the interior
of white dwarf stars (see also Exercise 1.3).

Exercise 3.4. Let w = w (v, δv) be the probability that a test particle
changes its velocity v to v + δv in the time interval δt.

The velocity distribution at the time t can be written as

f(v, t) =
∫

f(v − δv, t− δt) w (v − δv, δv) d 3δv . (3.36)

Show that

the Fokker-Planck equation follows from the Taylor series ex-
pansion of the function f(v, t) given by formula (3.36).
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Exercise 3.5. Express the collisional integral in terms of the differen-
tial cross-sections of interaction between particles.

Exercise 3.6. Show that

the Fokker-Planck collisional model can be derived from the
Boltzmann collisional integral

under the assumption that the change in the velocity of a particle due
to a collision is rather small.

Exercise 3.7. The Landau integral is generally thought to approx-
imate the Boltzmann integral for the 1/r potential to a ‘dominant
order’, i.e. to within terms of order 1/lnΛ, where lnΛ is the Coulomb
logarithm.

However this is not the whole truth.

Show that

the Landau integral approximates the Boltzmann integral to
the dominant order only in parts of the velocity space.

Exercise 3.8. Find the constant of integration c 0 in formula (3.25).

Exercise 3.9. Write and discuss the gravitational analog of the Vlasov
equation.

Answer.

The basic assumption is that the gravitational N -body system can
be described in terms of a statistically smooth distribution function f (X, t).

The Vlasov equation manifests that this function will stream freely
in the self-consistent gravitational potential φ (r, t) associated with f (X, t),
so that

∂f (X, t)

∂t
+ vα

∂f (X, t)

∂rα

− ∂φ

∂rα

∂f (X, t)

∂vα

= 0 . (3.37)

Here
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∆φ = − 4π Gρ (r, t) (3.38)

and

ρ (r, t) =
∫

f (r,v, t) d 3v . (3.39)

Note that, in the context of the mean field theory, a distribution of
particles over their masses has no effect.

Applying for example to the system of stars in a galaxy, Equa-
tion (3.37) implies that

the net gravitational force acting on a star is determined by
the large-scale structure of the galaxy rather than by whether
the star happens to lie close to some other star.

The force acting on any star does not vary rapidly, and each star is
supposed to accelerate smoothly through the force field generated by
the galaxy as a whole.

In fact, gravitational encounters are not screened, they can
be thought of as leading to an additional collisional term on the right
side of the equation – a collisional integral.

However very little is known mathematically about such possibility.

Exercise 3.10. Discuss a gravitational analog of the Landau integral
in the following form

(
∂f̂

∂t

)

c

= σ
∂

∂ v

∫

v ′

∂2 |v − v ′ |
∂ v ∂ v ′ ·

(
∂

∂ v
− ∂

∂ v ′

)
×

× [ f(r, v, t) f(r, v ′, t) ] d 3v ′ . (3.40)

Here σ is a constant determined by the effective collision rate.



Chapter 4

Macroscopic Description of
Astrophysical Plasma

In this Chapter we treat individual kinds of particles as con-
tinuous media, mutually penetrating charged gases which
interact between themselves and with an electromagnetic
field.

This approach gives us the multi-fluid model which is
useful to consider many properties of astrophysical plasmas,
e.g., the solar wind.

4.1 Summary of microscopic description

The kinetic equation gives us a microscopic (though averaged in a
statistical sense) description of plasma.

Let us consider the transition to a less comprehensive macroscopic
description.

We start from the kinetic equation for particles of kind k

∂fk (X, t)

∂t
+ vα

∂fk (X, t)

∂rα

+

+
F k,α (X, t)

mk

∂fk (X, t)

∂vα

=

(
∂f̂k

∂t

)

c

. (4.1)

77
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Here the statistically averaged force is

F k,α (X, t) =
∑

l

∫

X1

F kl,α (X,X1) fl (X1, t) dX1 (4.2)

and the collisional integral

(
∂f̂k

∂t

)

c

= − ∂

∂vα

J k,α (X, t) , (4.3)

where the flux of particles of kind k

J k,α (X, t) =
∑

l

∫

X1

1

mk

F kl,α (X,X1) f kl (X, X1, t) dX1 (4.4)

in the 6D phase space X = { r,v}.

4.2 Definition of macroscopic quantities

Before the deduction of equations for the macroscopic quantities or
macroscopic transfer equations, let us define the following moments
of the distribution function.

(a) The zeroth moment (without multiplying the distribution func-
tion fk by the velocity v)

∫

v

fk (r,v, t) d 3v = nk(r, t) (4.5)

is the number of particles of kind k in a unit volume.

It is related to the mass density of particles of kind k

ρk(r, t) = mk nk(r, t) .

The plasma mass density is accordingly
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ρ (r, t) =
∑

k

mk nk(r, t) . (4.6)

(b) The first moment of the distribution function, i.e. the integral
of the product of the velocity v to the first power and the distribution
function fk,

∫

v

vα fk(r,v, t) d 3v = nk uk,α (4.7)

is the particle flux, i.e. product of the number density by their mean
velocity

uk,α(r, t) =
1

nk

∫

v

vα fk(r,v, t) d 3v . (4.8)

Consequently, the mean momentum of particles of kind k in a unit
volume is expressed as follows

mk nk uk,α = mk

∫

v

vα fk(r,v, t) d 3v . (4.9)

(c) The second moment of the distribution function is defined to
be

Π
(k)
αβ (r, t) = mk

∫

v

vαvβ fk (r,v, t) d 3v =

= mknk uk,αuk,β + p
(k)
αβ . (4.10)

Here we have introduced

v ′α = vα − uk,α

which is the deviation of the particle velocity from its mean value (4.8),
so that

〈 v ′α 〉v = 0 ;
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and

p
(k)
αβ = mk

∫

v

v ′αv ′β fk (r,v, t) d 3v , (4.11)

is the pressure tensor.

Π
(k)
αβ is the tensor of momentum flux for particles of kind k.

Its component Π
(k)
αβ is the αth component of the momentum trans-

ported by the particles of kind k, in a unit time, across the unit area
perpendicular to the axis rβ.

Once we know the distribution function fk (r,v, t), we can derive all
macroscopic quantities related to these particles.

So, higher moments of the distribution function will be introduced
as needed.

4.3 Macroscopic transfer equations

Note that the deduction of macroscopic equations is just derivation of
the equations for the distribution function moments.

4.3.1 Equation for the zeroth moment

Let us calculate the zeroth moment of the kinetic equation:

∫

v

∂fk

∂t
d 3v +

∫

v

vα
∂fk

∂rα

d 3v +

+
∫

v

Fk,α

mk

∂fk

∂vα

d 3v =
∫

v

(
∂f̂k

∂t

)

c

d 3v . (4.12)

We interchange the order of integration over velocities and the dif-
ferentiation with respect to time t in the first term and with respect to
coordinates rα in the second one.
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Under the second integral

vα
∂fk

∂rα

=
∂

∂rα

(vαfk)− fk
∂vα

∂rα

=
∂

∂rα

(vαfk)− 0 ,

since r and v are independent variables in the phase space X.

Taking into account that the distribution function quickly ap-
proaches zero as v → ∞, the integral of the third term is taken
by parts and equals zero (Exercise 4.1).

The integral of the right-hand side of (4.12) describes the change
in the number of particles of kind k as a result of collisions with
particles of other kinds.

If the processes of transformation, during which the particle kind
can be changed (such as ionization, recombination, charge exchange
etc., see Exercise 4.2), are not allowed for, then the last integral is zero
as well:

∫

v

(
∂f̂k

∂t

)

c

d 3v = 0 . (4.13)

Thus, by integration of (4.12), the following equation is found

∂nk

∂t
+

∂

∂rα

nk uk,α = 0 .

(4.14)

This is the continuity equation expressing the conservation of parti-
cles of kind k or (i.e. the same, of course) conservation of their mass:

∂ρk

∂t
+

∂

∂rα

ρk uk,α = 0 . (4.15)

Equation (4.14) for the zeroth moment nk depends on the
unknown first moment uk,α.

This is illustrated by Fig. 4.1.
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LT KE
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Figure 4.1: KE is the kinetic equation, m0 is the equation for
the zeroth moment of the distribution function fk.

4.3.2 The momentum conservation law

Now let us calculate the first moment of the kinetic equation multiplied
by the mass mk:

mk

∫

v

∂fk

∂t
vα d 3v +

+ mk

∫

v

vαvβ
∂fk

∂rβ

d 3v +
∫

v

vα Fk,β
∂fk

∂vβ

d 3v =

= mk

∫

v

vα

(
∂f̂k

∂t

)

c

d 3v . (4.16)

With allowance made for the definitions (4.7) and (4.10), we obtain the
momentum conservation law

∂

∂t
(mknk uk,α) +

∂

∂rβ

(
mknk uk,αuk,β + p

(k)
αβ

)
−
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−〈F k,α(r, t) 〉v = 〈F (c)
k,α (r, t) 〉v . (4.17)

Here p
(k)
αβ is the pressure tensor (4.11), i.e. a part of the unknown second

moment (4.10).

The mean force acting on the particles of kind k in a unit volume
is

〈F k,α (r, t) 〉v =
∫

v

F k,α (r,v, t) fk (r,v, t) d 3v . (4.18)

In the case of the Lorentz force, the mean force

〈F k,α (r, t) 〉 v = nkek

[
Eα +

1

c
(uk ×B )α

]

or

〈F k,α (r, t) 〉 v = ρ q
k Eα +

1

c
( j q

k ×B )α .
(4.19)

Here ρ q
k and j q

k are the mean densities of electric charge and current,
produced by the particles of kind k.

Note that

the mean electromagnetic force couples all the charged com-
ponents of astrophysical plasma together

because the electric and magnetic fields, E and B, act on all charged
components and, at the same time, all charged components contribute
to the electric and magnetic fields according to Maxwell’s equations.

The right-hand side of Equation (4.17) contains the mean force re-
sulting from collisions, the mean collisional force

〈F (c)
k,α (r, t) 〉 v = mk

∫

v

vα

(
∂f̂k

∂t

)

c

d 3v . (4.20)
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Substituting (4.3) in definition (4.20) and integrating gives us the
most general formula for the mean collisional force

〈F (c)
k,α (r, t) 〉 v = mk

∫

v

J k,α (r,v, t) d 3v = (4.21)

=
∑

l 6=k

∫

v

∫

v1

∫

r1

F kl,α (r,v, r1,v1) fkl (r,v, r1,v1, t) d 3r1 d 3v1 d 3v .

Note that

for the particles of the same kind, the elastic collisions cannot
change the total particle momentum per unit volume.

That is why l 6= k in the sum (4.21).

Formula (4.21) contains the unknown binary correlation function fkl.

The last should be found from the correlation function Equation (2.45)
indicated as the second link BC in Fig. 4.2.

Thus

the equation for the first moment of the distribution function
is as much unclosed as the initial kinetic equation.

Therefore the equation for the first moment is unclosed in two direc-
tions.

If each of kinds of particles is in thermodynamic equilibrium, then
the mean collisional force can be expressed in terms of the mean mo-
mentum loss during the collisions of a particle of kind k with the
particles of other kinds:

〈F (c)
k,α (r, t) 〉 v = −∑

l 6=k

mknk (uk,α − ul,α)

τkl

.

(4.22)
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Figure 4.2: m0, m1 are
the equations for the
first two moments. The
link m1 is unclosed in
two directions.

Here τ−1
kl = ν kl is the mean frequency of collisions between the particles

of kinds k and l.

If uk,α > ul,α then the mean collisional force is negative:

the fast particles of kind k slow down by collisions with the
slowly moving particles of other kinds.

The force is zero, once the particles of all kinds have identical mean
velocities.

Therefore

the mean collisional force, as well as the mean electromag-
netic force, tends to make astrophysical plasma be a single
hydrodynamic medium.
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4.4 The energy conservation law

4.4.1 The second moment equation

The second moment of a distribution function fk is the tensor of mo-
mentum flux density

Π
(k)
αβ (r, t) = mk

∫

v

vαvβ fk (r,v, t) d 3v =

= mknk uk,αuk,β + p
(k)
αβ .

In order to find an equation for this tensor, we should multiply the
kinetic equation

∂fk

∂t
+ vα

∂fk

∂rα

+
F k,α

mk

∂fk

∂vα

=

(
∂f̂k

∂t

)

c

by the factor mk vαvβ and integrate over velocity space v.

In this way, we could arrive to a matrix equation in partial deriva-
tives.

If we take the trace of this equation we obtain the partial differential
scalar equation for energy density of the particles.

This is the correct self-consistent way which is the basis of the mo-
ment method.

For our aims, a simpler direct procedure is sufficient and correct.

In order to derive the energy conservation law, we multiply
Equation (4.1) by the particle’s kinetic energy

mkv
2
α/2

and integrate over velocities, taking into account that

vα = uk,α + v ′α , 〈 v ′α 〉v = 0 ,

and
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v 2
α = u 2

k,α + (v ′α)
2
+ 2 uk,α v ′α .

A straightforward integration yields

∂

∂t

(
ρku

2
k

2
+ ρk εk

)
+

+
∂

∂rα

[
ρkuk,α

(
u 2

k

2
+ εk

)
+ p

(k)
αβ uk,β + q k,α

]
=

= ρ q
k (E · uk) +

(
F

(c)
k · uk

)
+ Q

(c)
k (r, t) + L (r)

k (r, t) . (4.23)

Here

mk εk(r, t) =
1

nk

∫

v

mk (v ′α)2

2
fk (r,v, t) d 3v =

=
mk

2nk

∫

v

(v ′α)
2

fk (r,v, t) d 3v (4.24)

is the mean kinetic energy of chaotic (non-directed) motion per
single particle of kind k.

Thus the first term on the left-hand side of (4.23) represents the
time derivative of the energy of the particles of kink k in a unit volume,
which is the sum of kinetic energy of a regular motion with the mean
velocity uk and the so-called internal energy.

As every tensor, the pressure tensor can be written as

p
(k)
αβ = pk δαβ + π

(k)
αβ . (4.25)

On rearrangement, we obtain the following general equation

∂

∂t

(
ρku

2
k

2
+ ρk εk

)
+
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+
∂

∂rα

[
ρkuk,α

(
u 2

k

2
+ wk

)
+ π

(k)
αβ uk,β + q k,α

]
=

= ρ q
k (E · uk) +

(
F

(c)
k · uk

)
+ Q

(c)
k (r, t) + L (r)

k (r, t) . (4.26)

Here

wk = εk +
pk

ρk

(4.27)

is the heat function per unit mass.

Therefore the second term on the left-hand side contains the energy
flux

ρkuk,α

(
u 2

k

2
+ wk

)
,

which can be called the ‘advective’ flux of kinetic energy.

Let us mention the known astrophysical application of this term.

The advective cooling of ions heated by viscosity might dominate
the cooling by the electron-ion collisions, e.g., in a high-temperature
plasma flow near a rotating black hole.

In an advection-dominated accretion flow (ADAF), the heat
generated via viscosity is transferred inward the black hole rather than
radiated away locally like in a standard accretion disk model.

However, discussing the ADAF as a solution for the important as-
trophysical problem should be treated with reasonable cautions.

Looking at Equations (4.23) for electrons and ions separately, we
see that

too many assumptions have to be made to arrive to the ADAF
approximation.
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For example, this is not realistic to assume that plasma electrons
are heated only due to collisions with ions and, for this reason, the
electrons are much cooler than the ions.

The suggestions underlying the ADAF model ignore several effects
including reconnection and dissipation of magnetic fields (regular and
random) in astrophysical plasma.

This makes a physical basis of the ADAF model uncertain.

4.4.2 The case of thermodynamic equilibrium

In order to clarify the definitions given above, let us, for a while, come
back to the general principles.

If the particles of the kth kind are in the thermodynamic equilib-
rium, then fk is the Maxwellian function with the temperature Tk:

f
(0)

k (r,v) = nk(r)

[
mk

2π k
B
Tk(r)

]3/2

×

× exp

{
− mk |v − uk(r) | 2

2 k
B
Tk(r)

}
. (4.28)

In this case, according to (4.24), the mean kinetic energy of chaotic
motion per single particle of kind k

mk εk =
3

2
k

B
Tk . (4.29)

The pressure tensor (4.11) is isotropic:

p
(k)
αβ = pk δαβ , (4.30)

where the scalar

pk = nk k
B
Tk (4.31)

is the gas pressure of the particles of kind k.
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This is also the equation of state for the ideal gas.

Thus we have found that the pressure tensor is diagonal.

This implies the absence of viscosity for the ideal gas:

π
(k)
αβ = 0 . (4.32)

The heat function per unit mass or, more exactly, the specific
enthalpy is

wk = εk +
pk

ρk

=
5

2

k
B
Tk

mk

. (4.33)

It was a particular case of the thermodynamic equilibrium.

4.4.3 The general case of anisotropic plasma

In general, we do not expect that the particles of kind k have reached
thermodynamic equilibrium.

Nevertheless we often use the mean kinetic energy (4.24) to define
the effective kinetic temperature Tk according to definition (4.29).

A kinetic temperature is just a measure for the spread of the
particle distribution in velocity space.

The kinetic temperatures of different components in astrophysical
plasma may differ from each other.

Moreover, in an anisotropic plasma, the kinetic temperatures par-
allel and perpendicular to the magnetic field are different.

Without supposing thermodynamic equilibrium, in an anisotro-
pic plasma, the part associated with the deviation of the distribution
function from the isotropic one is distinguished in the pressure tensor:

p
(k)
αβ − pk δαβ = π

(k)
αβ . (4.34)
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Here π
(k)
αβ is called the viscous stress tensor.

Recall that we did not derive an equation for this tensor.

The term π
(k)
αβ uk,β in equation (4.23) represents the flux of energy

released by the viscous force in the particles of kind k.

The last term on the left-hand side of the energy equation, the vector

q k,α =
∫

v

mk (v ′)2

2
v ′α fk (r,v, t) d 3v (4.35)

is the heat flux density due to the particles of kind k.

Formula (4.35) shows that a third-order-moment term appears
in the second order moment of the kinetic equation.

The right-hand side of the energy conservation law (4.23) contains
the following four terms:

(a) The first term

ρ q
k (E · uk) = nkek Eα uk,α (4.36)

is the work done by the Lorentz force (without the magnetic field, of
course) in unit time on unit volume.

(b) The second term

(
F

(c)
k · uk

)
= uk,α

∫

v

mk v ′α

(
∂f̂k

∂t

)

c

d 3v (4.37)

is the work done by the collisional force of friction of the particles of
kind k with all other particles in unit time on unit volume.

The work of friction force results from the mean momentum
change of particles of kind k (moving with the mean velocity
uk) owing to collisions with all other particles.
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This work equals zero if uk = 0.

(c) The third term

Q
(c)
k (r, t) =

∫

v

mk (v ′)2

2

(
∂f̂k

∂t

)

c

d 3v (4.38)

is the rate of thermal energy release (heating or cooling) in a gas of the
particles of kind k due to collisions with other particles.

Recall that the collisional integral depends on the binary correla-
tion function fkl.

(d) The last term L (r)
k (r, t) takes into account that a plasma com-

ponent k can gain energy by absorbing radiations of different kinds and
can lose the energy by emitting radiations.

4.5 General properties of transfer equations

4.5.1 Divergent and hydrodynamic forms

Equations (4.14), (4.17), and (4.23) are referred to as the equations of
particle, momentum and energy transfer.

They are written in the ‘divergent’ form.

This essentially states the conservation laws and turns out to be
convenient in numerical work, to construct the conservative schemes
for computations.

Sometimes, other forms are more convenient.

For instance, the equation of momentum transfer or simply the equa-
tion of motion can be brought into the frequently used form:

ρk

(
∂ uk,α

∂t
+ uk,β

∂ uk,α

∂rβ

)
= − ∂

∂rβ

p
(k)
αβ +

+ 〈F k,α (r, t) 〉 v + 〈F (c)
k,α (r, t) 〉 v . (4.39)
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The so-called substantial derivative appears on the left-hand side of
this equation:

d (k)

dt
=

∂

∂t
+ uk,β

∂

∂rβ

=
∂

∂t
+ uk · ∇r .

(4.40)

This substantial or advective derivative – the total time derivative
following a fluid element of kind k – is typical of hydrodynamic-
type equations, to which the equation of motion (4.39) belongs.

In the frame, in which the fluid element is not moving, the
mean velocity uk = 0 but the time partial derivative ∂/∂t
does not vanish of course.

The total time derivative with respect to the mean velocity uk of the
particles of kind k is different for each kind k.

In the one-fluid MHD theory, we shall introduce the substantial
derivative with respect to the average velocity of the plasma as a whole.

For the case of the Lorentz force, the equation of motion of the
particles of kind k can be rewritten as follows:

ρk
d (k) uk,α

dt
= − ∂

∂rβ

p
(k)
αβ + ρ q

k Eα +
1

c
( j q

k ×B )α +

+ 〈F (c)
k,α (r, t) 〉 v . (4.41)

Here the right-hand side represents the forces acting on the fluid ele-
ment of kind k, in particular, the last term is the mean collisional
force.

The left-hand side of (4.41) is the change of the momentum of this
fluid element.
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4.5.2 Status of the conservation laws

As we saw above, when we treat a plasma as several continuous media
(the mutually penetrating charged gases), for each of them,

the main three average properties (density, velocity, and a
quantity like temperature) are governed by the basic conser-
vation laws for mass, momentum, and energy in the media.

These conservation equations contain more unknowns than the num-
ber of equations.

The transfer equations for local macroscopic quantities are as much
unclosed as the initial kinetic equation (see KE in Fig. 4.3).

LT KE

f
k

f
k

f
kl

< >
X

< >
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k
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...BC
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0
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2

=

=
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Figure 4.3: KE and BC

are the kinetic equa-
tion and the equation for
the correlation function.
m0, m1 etc. are the
chain of the equation for
the moments.

For example, formula for the mean collisional force contains the
unknown correlation function fkl.

The last should be found from the correlation function Equation
(the second link BC in Fig. 4.3).
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The terms (4.37) and (4.38) in the energy conservation equation also
depend on the unknown function fkl.

It is also important that the transfer equations are unclosed in ‘or-
thogonal’ direction:

Equation for the zeroth moment (the link m0 in Fig. 4.3), density nk,
depends on the unknown first moment, the mean velocity uk, and so
on.

This process of generating equations for the higher moments
could be extended indefinitely depending solely on how many primary
variables (nk, uk, εk, ...) we are prepared to introduce.

Anyway we know now that

the conservation laws for mass, momentum, and energy in the
components of astrophysical plasma represent the first three
links in the chain of equations for the distribution function
moments.

It certainly would not be easy (if possible) to arrive to this fundamental
conclusion

and
would be difficult to derive the conservation laws in the form of

the transfer Equations (4.14), (4.17), and (4.23) in the way which is
typical for the majority of textbooks: from simple specific knowledge
to more general ones.

4.6 Equation of state and transfer coefficients

The first three transfer equations for a plasma component k would be
closed with respect to the three unknown variables ρk, uk, and εk,

if it were possible to express the other unknown quantities pk, π
(k)
αβ ,

q (k)
α , etc. in terms of these three variables.

Thus, we have to know the equation of state and the so-called
transfer coefficients.
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How can we find them?

Formally, we should write equations for higher moments of the
distribution function.

However these equations will not be closed either.

So, how shall we proceed?

According to the general principles of statistical physics,

by virtue of collisions in a closed system of particles, any dis-
tribution function tends to assume the Maxwellian form.

The Maxwellian distribution is the kinetic equation solution for a
stationary homogeneous gas in the absence of any mean force in the
thermal equilibrium, i.e. for a gas in thermodynamic equilibrium.

Then spatial gradients and derivatives with respect to time are zero.

In fact they are always nonzero.

For this reason, the assumption of full thermodynamic equilibrium
is replaced with the local thermodynamic equilibrium (LTE).

Moreover

if the gradients and derivatives are small, then the real distri-
bution function differs little from the local Maxwellian one,
the difference being proportional to the small gradients or
derivatives.

If we are interested in a process occurring in a time t, which is much
greater than the collision time τ , and at a distance L, which is much
larger than the mean free path λ,

t À τ , L À λ , (4.42)

then the distribution function fk(r,v, t) is a sum of the local Max-
wellian distribution
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f
(0)

k (r,v, t) = nk(r, t)

[
mk

2π k
B
Tk(r, t)

]3/2

×

× exp

{
− mk |v − uk(r, t) | 2

2 k
B
Tk(r, t)

}
(4.43)

and some small additional term f
(1)

k (r,v, t).

Therefore

fk(r,v, t) = f
(0)

k (r,v, t) + f
(1)

k (r,v, t) . (4.44)

Since the function f
(0)

k depends on t and r, we find the derivatives

∂f
(0)

k /∂t and ∂f
(0)

k /∂rα.

By using these derivatives, we substitute function (4.44) in the ki-
netic equation and linearly approximate the collisional integral by using
one or another of the models introduced in Chapter 3; see also Exer-
cise 4.5.

Then we seek the additional term f
(1)

k in the linear approximation.

For example, in the case of the heat flux qα, the flux qα is chosen to
be proportional to the temperature gradient.

Thus, in a fully ionized plasma without magnetic field, the heat
flux in the electron component of plasma

q e = −κ e∇Te , (4.45)

where

κ e ≈ 1.84× 10−5

lnΛ
T 5/2

e (4.46)

is the coefficient of electron thermal conductivity.

In the presence of strong magnetic field in astrophysical plasma,
all the transfer coefficients become highly anisotropic.
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Since the Maxwellian function and its derivatives are determined by
the parameters nk, uk, and Tk, the transfer coefficients are expressed
in terms of the same quantities and magnetic field B, of course.

This procedure makes it possible to close the set of transfer
equations for astrophysical plasma

under the conditions (4.42).

∗ ∗ ∗

The first three moment equations were extensively used in astro-
physics, for example, in investigations of the solar wind.

They led to a significant understanding of phenomena such as es-
cape, acceleration and cooling.

However, as more detailed observations become available, it ap-
peared that the collisionally dominated models are not adequate
for most physical states of the solar wind.

A higher order, closed set of equations for the six moments have
been derived for multi-fluid, moderately non-Maxwellian plasma
of the solar wind.

On this basis, the generalized expression for heat flux relates the
flux to the temperature gradients, relative streaming velocity, thermal
anisotropy, temperature differences of the components.

4.7 Gravitational systems

There is a big difference between astrophysical plasmas and astrophys-
ical gravitational systems (Sect. 3.3).

The gravitational attraction cannot be screened.

A large-scale gravitational field always exists over a system be-
cause the neutrality condition (3.17) cannot be satisfied.
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The large-scale gravitational field makes an overall thermody-
namic equilibrium impossible.

Therefore

those results of plasma astrophysics which explicitly depend
upon the plasma being in thermodynamic equilibrium do not
hold for gravitational systems.

For systems, like the stars in a galaxy, we may hope that the ob-
served distribution function reflects something about the initial con-
ditions rather than just the relaxation mechanism.

So galaxies may be providing us with clues on how they were
formed.

∗ ∗ ∗

If we consider processes on a spatial scale which is large enough to
contain a large number of stars then one of the main requirements of
the continuum mechanics is justified.

Anyway, several aspects of the structure of a galaxy can be under-
stood in hydrodynamic approximation.

More often than never,

hydrodynamics provides a first level description of an astro-
physical phenomenon governed predominantly by the gravi-
tational force.

For example, the early stages of star formation during which an
interstellar cloud of low density collapses under the action of its own
gravity can be modeled in the hydrodynamic approximation.

However, when we want to explain the difference between the an-
gular momentum of the cloud and that of the born star, we have to
include the effect of a magnetic field.
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Chapter 5

The Generalized Ohm’s Law
in Plasma

The multi-fluid models of astrophysical plasma allow us to
derive the generalized Ohm’s law and to consider different
physical approximations, including the collisional and col-
lisionless plasma models.

5.1 The classic Ohm’s law

The usual Ohm’s law,

j = σE ,

relates the current j to the electric field E in a solid conductor in
rest.

As we know, the electric field in every equation of motion determines
acceleration of particles rather than their velocity.

That is why, generally, such a simple relation as the classic Ohm’s
law does not exist.

Moreover, while considering astrophysical plasmas, it is necessary
to take into account the presence of a magnetic field and the motion
of a plasma as a whole or as a medium consisting of several moving
components, their compressibility.

101
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Recall the way of deriving the usual Ohm’s law.

The current is determined by the relative motion of electrons and
ions.

Let us assume that the ions do not move.

An equilibrium is set up between the electric field action and electrons-
on-ions friction:

0 = − e ne Eα + mene νei ( 0− ue,α) ,

resulting in Ohm’s law

jα = − e ne ue,α = +
e2ne

me νei

Eα = σEα . (5.1)

Here

σ =
e2ne

me νei

(5.2)

is the electric conductivity.

In order to deduce the generalized Ohm’s law for a plasma with
magnetic field, we have to consider at least two equations of motion
– for the electron and ion components.

5.2 Derivation of basic equations

Let us write the momentum equations for electrons and ions:

me
∂

∂t
(ne ue,α) = − ∂ Π

(e)
αβ

∂rβ

− ene

[
E +

1

c
(ue ×B )

]

α
+

+ mene νei (ui,α − ue,α) , (5.3)

mi
∂

∂t
(ni ui,α) = − ∂ Π

(i)
αβ

∂rβ

+ Zi eni

[
E +

1

c
(ui ×B )

]

α
+



5.2. Derivation of Basic Equations 103

+ mene νei (ue,α − ui,α) . (5.4)

Here the tensor of momentum flux

Π
(e)
αβ (r, t) = mene ue,α ue,β + p

(e)
αβ (5.5)

and
Π

(i)
αβ (r, t) = mini ui,α ui,β + p

(i)
αβ . (5.6)

The last term in (5.3) represents the mean momentum transferred,
because of collisions, between electrons and ions.

It is equal, with opposite sign, to the last term in Equation (5.4).

We assume that there are just two kinds of particles, their total
momentum remaining constant under the action of elastic collisions.

Now let us suppose that the ions are protons (Zi = 1), and electrical
neutrality occurs:

ni = ne = n .

Let us multiply (5.3) by −e/me and add it to (5.4) multiplied
by e/mi.

The result is

∂

∂t
[ en (ui,α − ue,α) ] =

[
e

mi

F i,α − e

me

F e,α

]
+

+ e2n
(

1

me

+
1

mi

)
Eα +

e2n

c

[ (
u e

me

×B
)

α

+
(

u i

mi

×B
)

α

]
−

− νei en
[
(ui,α − ue,α) +

me

mi

(ui,α − ue,α)
]
. (5.7)

Here

F e,α = − ∂ Π
(e)
αβ

∂rβ

and F i,α =
∂ Π

(i)
αβ

∂rβ

. (5.8)
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Let us introduce the velocity of the centre-of-mass system

u =
mi u i + me u e

mi + me

.

Since mi À me,

u = u i +
me

mi

u e ≈ u i . (5.9)

On treating Equation (5.7), we neglect the small terms of the order
of the ratio me/mi.

We obtain the equation for the current

j = en (u i − u e)

in the system of coordinates (5.9).

This equation is

∂ j ′

∂t
=

e2n

me

[
E +

1

c
(u×B )

]
− e

mec
( j ′ ×B )−

− νei j
′ +

e

mi

Fi − e

me

Fe . (5.10)

The prime designates the current in the system of moving plasma, i.e.
in the rest-frame of the plasma.

Let E u denote the electric field in this frame of reference, i.e.

E u = E +
1

c
u×B . (5.11)

Now we divide Equation (5.10) by νei and represent it in the form

j ′ =
e2n

meνei

E u −
ω (e)

B

νei

j ′ × n−

− 1

νei

∂ j ′

∂t
+

1

νei

(
e

mi

Fi − e

me

Fe

)
. (5.12)
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Here
n = B/B

and

ω (e)
B

=
eB

mec

is the electron gyro-frequency.

Thus we have derived a differential equation for the current j ′.

The third and the fourth terms on the right do not depend of mag-
netic field.

Let us replace them by some effective electric field

σE eff = − 1

νei

∂ j ′

∂t
+

e

νei

(
1

mi

Fi − 1

me

Fe

)
, (5.13)

where

σ =
e2n

me νei
(5.14)

is the plasma conductivity in the absence of magnetic field.

Combine the fields (5.11) and (5.13),

E ′ = E u + E eff , (5.15)

in order to rewrite (5.12) in the form

j ′ = σE ′ − ω (e)
B

νei

j ′ × n . (5.16)

We shall consider (5.16) as an algebraic equation in j ′, neglecting the
∂ j ′/∂t dependence of the field (5.13).

Note, however, that

the term ∂ j ′/∂t is by no means small in the problem of the
particle acceleration by a strong electric field in astrophysi-
cal plasma.
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Collisionless reconnection is the phenomenon in which parti-
cle inertia of the current replaces classical resistivity in allowing fast
reconnection to occur.

5.3 The general solution

Let us find the solution to Equation (5.16) as a sum

j ′ = σ‖E
′
‖ + σ⊥E ′

⊥ + σ
H
n× E ′

⊥ .
(5.17)

Substituting (5.17) in (5.16) gives

σ ‖ = σ =
e2n

meνei

, (5.18)

σ⊥ = σ
1

1 +
(
ω (e)

B
τei

)2 , (5.19)

σ
H

= σ
ω (e)

B
τei

1 +
(
ω (e)

B
τei

)2 . (5.20)

Formula (5.17) is called the generalized Ohm’s law.

A magnetic field in a plasma not only changes the magnitude of the
conductivity, but the form of Ohm’s law as well:

the electric field and the resulting current are not parallel, since

σ⊥ 6= σ ‖ .

Thus the conductivity of a plasma in a magnetic field is anisotropic.

Moreover the current component j ′
H

is perpendicular to both the
magnetic and electric fields.

This component is the so-called Hall current (Fig. 5.1).
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Figure 5.1: The direct (j ′‖ and j ′⊥)
and Hall’s (j ′

H
) currents in a

plasma with electric (E ′) and
magnetic (B) fields.
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5.4 The conductivity of magnetized plasma

5.4.1 Two limiting cases

The magnetic-field influence on the conductivity σ⊥ and on the Hall
conductivity σ

H
is determined by the parameter

ω (e)
B

τei .

This is the turning angle of an electron on the Larmor circle in the
intercollisional time.

Let us consider two limiting cases.

(a) The turning angle be small:

ω (e)
B

τei ¿ 1 . (5.21)

Obviously this corresponds to the weak magnetic field or dense
cool plasma, so that the electric current is scarcely affected by the
magnetic field:

σ⊥ ≈ σ ‖ = σ ,
σ

H

σ
≈ ω (e)

B
τei ¿ 1 . (5.22)

Thus the usual Ohm’s law with isotropic conductivity holds.
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(b) The opposite case, when the electrons spiral freely between
rare collisions of electrons with ions:

ω (e)
B

τei À 1 , (5.23)

corresponds to the strong magnetic field and hot rarefied plasma.

This plasma is termed the magnetized one.

It is frequently encountered under astrophysical conditions.

In this case

σ ‖ = σ ≈
(
ω (e)

B
τei

)
σ

H
≈

(
ω (e)

B
τei

)2
σ⊥ . (5.24)

Hence in a magnetized plasma, for example in the solar corona

σ‖ À σ
H
À σ⊥ .

(5.25)

In other words,

the impact of the magnetic field on the direct current is es-
pecially strong for the component resulting from the electric
field E ′

⊥.

The current in the E ′
⊥ direction is considerably weaker than it would

be in the absence of a magnetic field.

Why?

5.4.2 The physical interpretation

The physical mechanism of the perpendicular current j ′⊥ is illustrated
by Fig. 5.2.

The primary effect of the electric field E ′
⊥ in the presence

of the magnetic field B is not the current in the direction E ′
⊥,

but rather the electric drift in the direction perpendicular to
both B and E ′

⊥.
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Figure 5.2: Initiation of the current in the direction of the
perpendicular field E ′

⊥ as the result of rare collisions (1, 2,
3, ...).

The electric drift velocity is independent of the particle’s mass and
charge.

The electric drift of electrons and ions generates the motion of the
plasma as a whole with the velocity

v = vd = c
E×B

B 2
. (5.26)

This would be the case if there were no collisions at all.

Collisions, even the rare ones, disturb the Larmor motion, leading
to a displacement of the ions (not shown in Fig. 5.2) along the field E ′

⊥,
and the electrons in the opposite direction (Fig. 5.2).

The small electric current j ′⊥ appears in the direction E ′
⊥.

To ensure the current across the magnetic field, the electric field
is necessary, i.e. the electric field component perpendicular to both the
current j ′⊥ and the field B.
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The Hall electric field balances the Lorentz force acting on
the carriers of the perpendicular electric current in a rarely
collisional plasma due to the presence of a magnetic field,

i.e. the force

F ( j ′⊥) =
e n

c
u i⊥ ×B− e n

c
u e⊥ ×B =

=
1

c
e n (u i⊥ − u e⊥)×B (5.27)

Hence the magnitude of the Hall electric field is

E ′
H

=
1

en c
j ′⊥ ×B . (5.28)

The Hall electric field in astrophysical plasma is frequently set up
automatically, as a consequence of small charge separation within
the limits of quasi-neutrality.

In a fully-ionized rarely-collisional plasma, the tendency for a
particle to spiral round the magnetic field lines insures the great reduc-
tion in the transversal conductivity.

However, since the dissipation of the energy of the electric current
into Joule heat,

j ′E ′ ,

is due solely to collisions between particles (if the particle acceleration
can be neglected), the reduced conductivity does not lead to increased
dissipation.

On the other hand, the Hall electric field and Hall current can
significantly modify conditions of magnetic reconnection.

Compared with ordinary resistive MHD, the Hall MHD reconnec-
tion is distinguished by qualitatively different magnetic field distri-
butions, electron and ion signatures in reconnecting current layers.
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Although the Hall effect itself is nondissipative,

j ′
H
E ′ = 0 , (5.29)

it can lead to dissipation through a turbulent “Hall cascade”, mag-
netic energy cascading from large to small scales, where it dissipates by
ohmic decay.

The Hall effect can dominate ohmic decay of currents in the crust of
neutron stars and therefore can determine evolution of their magnetic
field.

In an initial poloidal dipole field, the toroidal currents “twist” the
field.

The resulting poloidal currents then generate a quadrupole polo-
idal field.

5.5 Currents and charges in plasma

5.5.1 Collisional and collisionless plasmas

Let us point out another property of the generalized Ohm’s law.

Under laboratory conditions, as a rule, one cannot neglect the gra-
dient forces.

On the contrary, these forces usually play no part in astrophysical
plasma.

We shall often ignore them.

However this simplification may be not justified in reconnecting
current layers, shock waves and other discontinuities.

Let us also restrict our consideration to very slow (say hydrody-
namic) motions of plasma.

These motions are supposed to be so slow that the following three
conditions are fulfilled.

(A) It is supposed that
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ω =
1

τ
¿ νei or νei τ À 1 , (5.30)

where τ is a characteristic time of the plasma motions.

Thus

departures of actual distribution functions for electrons and
ions from the Maxwellian distribution are small.

This allows us to handle the transfer phenomena in linear approxima-
tion.

Moreover, if a single-fluid model makes a sense, the electrons and
ions could have comparable temperatures, ideally, the same one T
which is the temperature of the plasma as a whole:

Te = Tp = T .

(B) We neglect the electron inertia in comparison with that of the
ions and make use of (5.9).

This condition is usually written in the form

ω ¿ ω (i)
B

=
eB

mic
. (5.31)

Thus

the plasma motions have to be so slow that their frequency is
smaller than the lowest gyro-frequency of the particles.

Recall that the gyro-frequency of ions

ω (i)
B
¿ ω (e)

B
.

(C) The third condition
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ω (e)
B

τei ¿ 1 . (5.32)

Hence we can use the isotropic conductivity σ.

The generalized Ohm’s law assumes the form which is specific to
the ordinary magnetohydrodynamics (MHD):

j ′ = σ
(
E +

1

c
u×B

)
. (5.33)

The MHD approximation is the subject of the next chapter.

Numerous applications of MHD to astrophysical plasma should be
discussed in the remainder of the lectures.

∗ ∗ ∗

In the opposite case, when the parameter

ω (e)
B

τei À 1 ,

charged particles revolve around magnetic field lines, and a typical
particle may spend a considerable time in a region of a size of the order
of the gyroradius.

Hence, if the length scale of a phenomenon is much larger than the
gyroradius, we may expect the hydrodynamic-type models to work.

It appears that, even when the parameter

ω (e)
B

τei →∞ ,

(like in the solar corona) and collisions are negligible, the 2D quasi-
hydrodynamic description of plasma, the Chew-Goldberger-Low(CGL)
approximation is quite useful.

This is because

a strong magnetic field makes a plasma, even a collisionless
one, more ‘interconnected’, more hydrodynamic in the di-
rections perpendicular to the magnetic field.
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As for the motion of particles along the magnetic field, some im-
portant kinetic features still are significant.

Chew et al.: “A strictly hydrodynamic approach to the problem is
appropriate only when some special circumstance suppresses the effects
of pressure transport along the magnetic lines”.

There is ample experimental evidence that strong magnetic fields
do make astrophysical plasmas behave like hydrodynamic charged
fluids.

This does not mean, of course, that there are no pure kinetic
phenomena in such plasmas.

There are many of them indeed.

The most interesting of them is magnetic reconnection in the
solar corona and solar wind.
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5.5.2 Volume charge and quasi-neutrality

While deriving the generalized Ohm’s law, the exact charge neutrality
of plasma was assumed:

∑

i

Zini = ne ,

i.e. the absolute absence of the volume charge in plasma:

ρ q = 0 .

However there is no need for such a strong restriction.

It is sufficient to require quasi-neutrality, i.e.
(∑

i

Zini − ne

)
n−1

e ¿ 1 .

So

the volume charge density has to be small in comparison to
the plasma density.

Once the volume charge density

ρ q = e

(∑

i

Zini − ne

)
6= 0 ,

yet another term must be taken into account in the Ohm’s law:

j q
u = ρ q u . (5.34)

This is the so-called convective current.

It must be added to the conductive current (5.17).

The volume charge, the associated electric force ρ q E and the con-
vective current ρ q u are of great importance in electrodynamics of rel-
ativistic objects such as black holes and pulsars.
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Charge-separated plasmas originate in magnetospheres of pul-
sars and rotating black holes, e.g., a super-massive black hole in
active galactic nuclei (AGN).

A strong electric field appears along the magnetic field lines.

The parallel electric field accelerates migratory electrons and/or
positrons to ultra-relativistic energies.

∗ ∗ ∗

Volume charge can be evaluated in the following manner.

From Maxwell’s equation

div E = 4πρ q

we estimate

ρ q ≈ E

4πL
. (5.35)

On the other hand, the equation of plasma motion yields

eneE ≈ p

L
≈ nekB

T

L
,

so that

E ≈ k
B
T

eL
. (5.36)

On substituting (5.36) in (5.35), we find

ρ q

ene

≈ k
B
T

eL

1

4πL

1

ene

=
1

L2

(
k

B
T

4πe2 ne

)

or

ρ q

ene

≈ r 2
DH

L2
.

(5.37)
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Since the usual concept of plasma implies that the Debye radius

r
DH
¿ L , (5.38)

the volume charge density is small in comparison with the plasma den-
sity.

When we consider phenomena with a length scale L much larger
than the Debye radius r

DH
and a time scale τ much larger than the

inverse the plasma frequency, the charge separation can be ne-
glected.

5.6 Practice: Exercises and Answers

Exercise 5.1 Consider a plasma system with given distributions of
magnetic and velocity fields.

Is it possible to use Equation (5.12) in order to estimate the growth
rate of electric current and, as a consequence, of magnetic field in such
a system, e.g., a protostar?

Exercise 5.2 Evaluate the characteristic value of the parallel conduc-
tivity in the solar corona.

Answer.

It follows from formula (5.18) that

σ ‖ ∼ 1016 − 1017 , s−1 . (5.39)

Exercise 5.3 Estimate the parameter ω (e)
B

τei in the corona above a
sunspot.

Answer.

Just above a large sunspot the field strength can be as high as
B ≈ 3000 G .

With τep ≈ 0.1 s, we obtain

ω (e)
B

τei ∼ 1010 rad À 1 .
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So, for anisotropic conductivity in the solar corona, the approximate
formulae (5.24) can be well used.



Chapter 6

Single-Fluid Models for
Astrophysical Plasma

Single-fluid models are the simplest but sufficient approxi-
mation to describe many large-scale low-frequency phe-
nomena in astrophysical plasma: motions driven by strong
magnetic fields, accretion disks, and relativistic jets.

6.1 Derivation of the single-fluid equations

6.1.1 The continuity equation

In order to consider a plasma as a single medium, we have to sum each
of the three transfer equations over all kinds of particles.

Let us start from the continuity equation

∂nk

∂t
+

∂

∂rα

nk uk,α = 0 .

With allowance for the definition of the plasma mass density ρ, we
have

∂ρ

∂t
+ div

(∑

k

ρkuk

)
= 0 . (6.1)

119
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The mean velocities of motion for all kinds of particles are supposed
to be equal to the plasma hydrodynamic velocity:

u1 (r, t) = u2 (r, t) = · · · = u (r, t) , (6.2)

as a result of action of the mean collisional force.

However this is not a general case.

In general, the mean velocities are not the same, but a frame of
reference can be chosen in which

ρu =
∑

k

ρkuk . (6.3)

Then from (6.1) and (6.3) we obtain the usual continuity equation

∂ρ

∂t
+ div ρu = 0 .

(6.4)

We shall consider both cases.

6.1.2 The momentum conservation law

In the same way, we handle the momentum equation

ρk
d (k) uk,α

dt
= − ∂

∂rβ

p
(k)
αβ + ρ q

k Eα +
1

c
( j q

k ×B )α +

+ 〈F (c)
k,α (r, t) 〉 v .

On summing over all kinds of particles, we obtain the equation

ρ
d uα

dt
= − ∂

∂rβ

pαβ + ρ q Eα +
1

c
( j×B )α +

+
∑

k

〈F (c)
k,α (r, t) 〉v . (6.5)
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Here the volume charge is

ρ q =
∑

k

nkek =
1

4π
div E , (6.6)

and the electric current is

j =
∑

k

nkek uk =
c

4π
rot B− 1

4π

∂E

∂t
. (6.7)

The electric and magnetic fields, E and B, are averaged fields asso-
ciated with the total electric charge density ρ q and the total current j.

They satisfy the macroscopic Maxwell equations.

Since elastic collisions do not change the total momentum,

∑

k

〈F (c)
k,α (r, t) 〉v = 0 . (6.8)

On substituting (6.6)–(6.8) in Equation (6.5), the latter gives the
momentum conservation law

ρ
d uα

dt
= − ∂

∂rβ

pαβ + Fα(E,B) .

(6.9)

Here the electromagnetic force is written in terms of the electric and
magnetic fields:

Fα(E,B) = − ∂

∂t

(E×B )α

4πc
− ∂

∂rβ

Mαβ . (6.10)

The tensor

Mαβ =
1

4π

[
−EαEβ −BαBβ +

1

2
δαβ (E2 + B2 )

]
(6.11)

is the Maxwellian tensor of stresses.

The divergent form of the momentum conservation law is
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∂

∂t

[
ρ uα +

(E×B )α

4πc

]
+

∂

∂rβ

( Παβ + Mαβ ) = 0 .

(6.12)

The operator ∂/∂t acts on two terms:

ρu is the momentum of the plasma in a unit volume,

E×B/4πc is the momentum of the electromagnetic field.

The divergency operator ∂/∂rα acts on

Παβ = pαβ + ρ uαuβ , (6.13)

which is the momentum flux tensor

Παβ =
∑

k

Π
(k)
αβ , (6.14)

see definition (4.10).

Thus the pressure tensor

pαβ = p δαβ + παβ , (6.15)

where
p =

∑

k

pk

is the total plasma pressure, the sum of partial pressures, and

παβ =
∑

k

π
(k)
αβ (6.16)

is the viscous stress tensor which allows for the transport of momen-
tum from one layer of the plasma flow to the other layers so that relative
motions inside the plasma are damped out.

The momentum conservation law (6.12) is applied for a wide range
of conditions in plasmas like fluid relativistic flows, for example,
astrophysical jets.
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The assumption that the astrophysical plasma behaves as a contin-
uum medium is excellent in the cases in which we are often interested:

the Debye length and the Larmor radii are much smaller than
the plasma flow scales.

On the other hand, going from the multi-fluid description to a single-
fluid model is a serious damage because we loose an information not
only on the small-scale dynamics of the electrons and ions but also
on the high-frequency processes in plasma.

The single-fluid equations describe well the low-frequency
large-scale behavior of plasma in astrophysical conditions.

6.1.3 The energy conservation law

In a similar manner as above, the energy conservation law is derived.

We sum Equation (4.23) over k and then substitute in the result-
ing equation the total electric charge (6.6) and the total electric cur-
rent (6.7) expressed in terms of the electric field E and magnetic field B.

The following divergent form of the energy conservation law is ob-
tained:

∂

∂t

(
ρu2

2
+ ρ ε +

E2 + B2

8π

)
+

+
∂

∂rα

[
ρ uα

(
u2

2
+ w

)
+

c

4π
(E×B )α + παβ uβ +

+ qα ] =
(
uαF (c)

α

)
ff

+ L (rad) (r, t) . (6.17)

On the left-hand side of this equation, an additional term has appeared:
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the operator ∂/∂t acts on the energy density of the electromagnetic
field

W =
E2 + B2

8π
. (6.18)

The divergency operator ∂/∂rα acts on the Poynting vector, the
electromagnetic energy flux

G =
c

4π
[E×B ] . (6.19)

The right-hand side of Equation (6.17) contains the total work of
friction forces in unit time on unit volume

(
uαF (c)

α

)
ff

=
∑

k

(
F

(c)
k,α uk,α

)
=

=
∑

k

uk,α

∫

v

mk v ′α

(
∂fk

∂t

)

c

d 3v . (6.20)

This work related to the relative motion of the plasma components
is not zero.

Recall that we consider general case (6.3).

By contrast, the total heat release under elastic collisions between
particles of different kinds is

∑

k

Q
(c)
k (r, t) =

∑

k

∫

v

mk (v ′)2

2

(
∂fk

∂t

)

c

d 3v = 0 . (6.21)

Elastic collisions in a plasma conserve both the total momen-
tum and the total energy.

If we accept condition (6.2) then the collisional heating (6.20) by
friction force is also equal to zero.

In this limit, there is not any term which contains the collisional
integral.
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Elastic collisions have done a good job.

Inelastic collisions are important in radiative cooling and heating.

In optically thin plasma with collisional excitations of ions, the
power of radiation from a unit volume of plasma is proportional to
the square of plasma density n (cm−3):

L (rad) ' −n2 q(T ) . (6.22)

The function q(T ) is called the radiative loss function.

It depends strongly on the temperature T but weakly on the plasma
density n (Fig. 6.1).

Figure 6.1: Radiative loss function vs. temperature at fixed
values of plasma density: 109 cm−3 (solid curve), 1010 cm−3

(dotted curve), 1011 cm−3 (dashed curve).
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6.2 Basic assumptions and the MHD equations

6.2.1 Old simplifying assumptions

As we saw above, the transfer equations determines the behavior of dif-
ferent kinds of particles in a plasma once two conditions are complied
with:

(a) many collisions occur in a characteristic time τ of a phenomenon
under consideration:

τ À τc , (6.23)

(b) the mean free path λc is significantly smaller than the dis-
tance L, over which macroscopic quantities change considerably:

L À λc . (6.24)

Once these conditions are satisfied, we can close the set of transfer
equations, as was discussed in Sect. 4.6.

While considering the generalized Ohm’s law, other three assump-
tions have been made.

The first condition can be written in the form

τ À τei , (6.25)

where τei is the electron-ion collisional time, the longest collisional
relaxation time.

Thus the electrons and ions have comparable temperatures, ideally,
the same temperature T .

Second, we neglect the electron inertia in comparison with that
of the ions.

This condition is usually written as

τ À
(
ω (i)

B

)−1
, where ω (i)

B
=

eB

mi c
. (6.26)



6.2. MHD Equations 127

Thus the plasma motions have to be so slow that their frequency ω =
1/τ is smaller than the lowest gyro-frequency of the particles.

The third condition,

ω (e)
B

τei ¿ 1 , (6.27)

is necessary to write down Ohm’s law in the form

j = σ
(
E +

1

c
v ×B

)
+ ρ q v . (6.28)

Here v is the velocity of plasma, E and B are the electric and magnetic
fields in the ‘laboratory’ system of coordinates, where we measure the
velocity v.

Accordingly, the field

E v = E +
1

c
v ×B (6.29)

is the electric field in a frame of reference related to the plasma.

Complementary to the restriction (6.24) on the characteristic length L,
we have to add the condition

L À r
DH

, (6.30)

where r
DH

is the Debye-Hückel radius.

Then the volume charge ρ q is small in comparison with the plasma
density ρ.

Under the conditions listed above, we use the general hydrodynamic-
type equations: the conservation laws for mass (6.4), momentum (6.5)
and energy (6.17).

The general hydrodynamic-type equations have a much
wider area of applicability in astrophysics than the equations
of ordinary MHD derived below.
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The latter will be simpler than the equations derived above.

Therefore additional simplifying assumptions are necessary.

Let us introduce them.

6.2.2 New simplifying assumptions

First assumption:

the conductivity σ is large, the electromagnetic processes being not
very fast.

Then, in the Maxwell’s equation

rotB =
4π

c
j +

1

c

∂E

∂t
,

we ignore the displacement current in comparison to the conductive
one.

The corresponding condition is found by evaluating the currents as
follows

1

c

E

τ
¿ 4π

c
j or ωE ¿ 4πσE .

Thus

ω ¿ 4πσ .
(6.31)

In the same order to the small parameter ω/σ, we neglect the
convective current in comparison with the conductive current in
Ohm’s law.

Actually,

ρ q v ≈ v div E
1

4π
≈ L

τ

E

L

1

4π
≈ ω

4π
E ¿ σE ,

once the condition (6.31) is satisfied.



6.2. MHD Equations 129

The conductivity of astrophysical plasma is often very high (Exer-
cise 5.1).

This is why condition (6.31) is satisfied up to frequencies close to
optical ones.

Neglecting the displacement current and the convective
current, Maxwell’s equations and Ohm’s law result in the following
relations:

j =
c

4π
rotB , (6.32)

E = − 1

c
v ×B +

c

4πσ
rotB , (6.33)

ρ q = − 1

4πc
div (v ×B ) , (6.34)

div B = 0 , (6.35)

∂B

∂t
= rot (v ×B ) +

c2

4πσ
∆B . (6.36)

Once B and v are given, the current j, the electric field E, and the
volume charge ρ q are determined by formulae (6.32)—(6.34).

Thus

the problem is reduced to finding the interaction of two vector
fields: the magnetic field B and the hydrodynamic velocity
field v.

As a consequence, the approach under discussion is known as magne-
tohydrodynamics (MHD).

The corresponding equation of motion is obtained by substitution
of (6.32)–(6.34) in the equation of momentum transfer (6.5).

With the viscous forces as usually written in hydrodynamics, we
have
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ρ
dv

dt
= −∇p + ρ q E− 1

4π
B× rotB+

+ η ∆v +
(
ζ +

η

3

)
∇ div v . (6.37)

Here η is the first viscosity coefficient, ζ is the second viscosity
coefficient (see Landau and Lifshitz, Fluid Mechanics).

Formulae for these coefficients and the viscous forces should be de-
rived from the moment equation for the pressure tensor.

∗ ∗ ∗

The second additional assumption has to be introduced now.

Treating Equation (6.37), the electric force ρ q E can be ignored
in comparison to the magnetic one if

v2 ¿ c2 , (6.38)

that is in the non-relativistic approximation.

To make certain that this is true, evaluate the electric force

ρ q E ≈ 1

4πc

vB

L

vB

c
≈ B2

4π

1

L

v2

c2
(6.39)

and the magnetic force

1

4π
|B× rotB | ≈ B2

4π

1

L
. (6.40)

Comparing (6.39) with (6.40), we see that the electric force is a factor
of v2/c2 short of the magnetic one.

In a great number of astrophysical applications, the plasma veloci-
ties fall far short of the speed of light.

The Sun is a good case in point.
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The largest velocities in coronal mass ejections (CMEs) do not
exceed 3× 108 cm/s.

Thus,
we neglect the electric force acting upon the volume charge in

comparison with the magnetic force.

However the relativistic objects like accretion disks near rotating
black holes (Novikov and Frolov, 1989), and pulsar magnetospheres
are at the other extreme.

The electric force plays a crucial role in electrodynamics of relativis-
tic objects.

6.2.3 Non-relativistic MHD

With the assumptions made above (2 + 3 + 2),

the considerable simplifications have been obtained;

and now we write the following set of equations of non-relativistic
MHD:

∂

∂t
ρ vα = − ∂

∂rβ

Π ∗
αβ , (6.41)

∂B

∂t
= rot (v ×B ) + νm ∆B , (6.42)

div B = 0 , (6.43)

∂ρ

∂t
+ div ρv = 0 , (6.44)

∂

∂t

(
ρv2

2
+ ρε +

B2

8π

)
= − div G , (6.45)

p = p (ρ, T ) . (6.46)

The momentum of electromagnetic field does not appear on the left-
hand side of (6.41).
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It is negligibly small in comparison to the plasma momentum ρ vα.

This fact is a consequence of neglecting the displacement current.

On the right-hand side of (6.41), the asterisk refers to the total
momentum flux tensor Π ∗

αβ, which equals

Π ∗
αβ = ρ vαvβ +

(
p δαβ − σv

αβ

)
+

+
1

4π

(
B2

2
δαβ −BαBβ

)
. (6.47)

In Equation (6.42)

νm =
c2

4πσ
(6.48)

is the magnetic viscosity.

It plays the same role as the kinematic viscosity ν = η/ρ in the
equation of motion.

The vector G is defined as the energy flux

Gα = ρ vα

(
v2

2
+ w

)
+

1

4π
[B× (v ×B ) ]α−

− νm

4π
(B× rotB )α − σv

αβ vβ − κ∇α T . (6.49)

The Poynting vector as a part in (6.49) is

G
P

=
1

4π
B× (v ×B ) − νm

4π
B× rot B . (6.50)

The energy flux due to friction is written as the contraction of the
velocity vector v and the viscous stress tensor σv

αβ .



6.2. MHD Equations 133

6.2.4 Energy conservation

The non-relativistic MHD equations are frequently used to model solar
flares, eruptive prominences, etc.

A goal of such studies is to deduce how energy of magnetic field
is stored and then suddenly released to drive these phenomena.

However

most models use a simple energy equation,

the discussion often centers on the over-simplified interpretation
or

just comparison of magnetic field structure in the models with
corresponding features observed in emission.

With new capabilities to study X-ray and EUV emission from Hin-
ode and complementary observations from SOHO, RHESSI and other
satellites, the models advance to more quantitative results.

We have to develop the MHD models that include radiative losses
and other dissipative processes, the energy transport by anisotropic
heat conduction.

The equation of state (6.46) can be rewritten in other thermody-
namic variables.

In order to do this, we have to make use of the thermodynamic
identities

dε = T ds +
p

ρ2
dρ and dw = T ds +

1

ρ
dp .

Here s is the entropy per unit mass.

We transform the energy conservation law (6.45) from the divergent
form to the hydrodynamic one:

ρ T
ds

dt
=

νm

4π
(rot B)2 + σv

αβ

∂vα

∂rβ

+

+ div κ∇T + L (rad) (r, t) . (6.51)
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Thus

the heat abundance change dQ = ρ T ds in a moving element
of unit volume is a sum of the Joule and viscous heating,
conductive heat redistribution and radiative cooling.

6.2.5 Relativistic magnetohydrodynamics

Relativistic MHD models are of considerable interest in several areas
of modern astrophysics.

The theory of gravitational collapse and models of supernova ex-
plosions are based on relativistic hydrodynamics for a star.

The effects of deviations from spherical symmetry due to magnetic
field require the use of relativistic MHD models.

Relativistic hydrodynamics is presumably applied to the so-called
quark-gluon plasma which is the primordial state of hadronic matter
in the Universe.

When the medium interacts electromagnetically and is highly con-
ducting, the simplest description is in terms of relativistic MHD.

From the mathematical viewpoint, the relativistic MHD was mainly
treated in the framework of general relativity.

This means that the MHD equations were studied in conjunction
with Einstein’s equations.

Lichnerowicz (1967) has made a thorough and deep investigation of
the initial value problem.

In many applications, however, one neglects the gravitational field
generated by the conducting medium in comparison with the back-
ground gravitational field

as well as

in many cases one simply uses special relativity.
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Such relativistic MHD is much simpler than the full general rela-
tivistic theory.

So more detailed results can be obtained (Novikov and Frolov, 1989).

6.3 Magnetic flux conservation. Ideal MHD

6.3.1 Integral and differential forms of the law

Equations (6.44), (6.41), and (6.45) are the conservation laws for mass,
momentum, and energy, respectively.

Let us show that Equation (6.42):

∂B

∂t
= rot (v ×B ) + νm ∆B ,

with νm = 0, is the magnetic flux conservation law.

Let us consider the time derivative of the vector B flux through a
surface S moving with the plasma (Fig. 6.2).

B

S

S
L

d

v

v

x
y

z

Figure 6.2: The magnetic field B flux through the surface S
moving with a plasma with velocity v.

According to the known formula of vector analysis (see Smirnov, 1965),
we have
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d

dt

∫

S

B · dS =
∫

S

(
∂ B

∂t
+ v div B + rot (B× v )

)
· dS .

Since div B = 0,

d

dt

∫

S

B · dS =
∫

S

(
∂ B

∂t
− rot (v ×B )

)
· dS ,

or, making use of Equation (6.42),

d

dt

∫

S

B · dS = νm

∫

S

∆B · dS .

(6.52)

Thus, if we cannot neglect magnetic viscosity νm, then

the change rate of magnetic flux through a surface mov-
ing together with a conducting plasma is proportional to
the magnetic viscosity.

The right-hand side of (6.52) can be rewritten with the help of the
Stokes theorem:

d

dt

∫

S

B · dS = − νm

∮

L

rot B · d l .

Here L is the ‘liquid contour’ bounding the surface S.

By using equation

j =
c

4π
rotB ,

we have
d

dt

∫

S

B · dS = − c

σ

∮

L

j · d l .

(6.53)
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The change rate of flux is proportional to resistivity σ−1 of the plasma.

Equation (6.53) is equivalent to the differential Equation (6.42) and
presents an integral form of the magnetic flux conservation law.

The magnetic flux through any surface moving with the
plasma is conserved, once the electric resistivity σ−1 can be
ignored.

When is it possible to neglect resistivity of plasma?

The relative role of a dissipation process can be evaluated as follows.

Let us pass on to the dimensionless variables

r∗ =
r

L
, t∗ =

t

τ
, v∗ =

v

v
, B∗ =

B

B0

.

On substituting them in (6.42) we obtain

B0

τ

∂ B∗

∂t∗
=

vB0

L
rot∗ (v∗ ×B∗ ) + νm

B0

L2
∆∗B∗ .

Now we normalize this equation with respect to its left-hand side, i.e.

∂ B∗

∂t∗
=

vτ

L
rot∗ (v∗ ×B∗ ) +

νmτ

L2
∆∗B∗ .

This dimensionless equation contains two dimensionless param-
eters.

The first one,

δ =
vτ

L
,

will be discussed later on.

Here, for simplicity, we assume δ = 1.

The second parameter,
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Rem =
L2

νm τ
=

vL

νm

,

(6.54)

is termed the magnetic Reynolds number, by analogy with the hy-
drodynamic Reynolds number

Re =
vL

ν
.

Omitting the asterisk, we write the dimensionless equation

∂ B

∂t
= rot (v ×B ) +

1

Rem

∆B . (6.55)

The larger the magnetic Reynolds number, the smaller the
role played by magnetic viscosity.

So the magnetic Reynolds number is the measure of a relative impor-
tance of resistivity.

If

Rem À 1 ,

we neglect the plasma resistivity and, as a consequence, magnetic
field diffusion and dissipation.

On the contrary, in laboratory, e.g., in devices for studying recon-
nection, because of a small value L2, the magnetic Reynolds number is
usually not large:

Rem ∼ 1− 3 .

In this case, the resistivity has a dominant role, and dissipation is
important.
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6.3.2 The ideal MHD

Under astrophysical conditions, owing to the low resistivity of plasma
and the enormously large length scales, the magnetic Reynolds num-
ber is usually huge:

Rem > 1010

(e.g., Exercise 6.1).

Thus, in a great number of problems, it is sufficient to consider a
medium with infinite conductivity:

Rem À 1 .

Furthermore the usual Reynolds number can be also large (see, however,
Exercise 6.2):

Re À 1 .

Let us also assume the heat exchange to be of minor importance.

This assumption is not universally true either.

Sometimes the thermal conductivity is so effective that an astro-
physical plasma must be considered as isothermal, rather than adia-
batic.

However, conventionally,

while treating the ‘ideal medium’, all dissipative coefficients
as well as the thermal conductivity are set equal to zero:

νm = 0 , η = ζ = 0 , κ = 0 .

The complete set of the ideal MHD equations has two equivalent
forms.

The first one is the transfer equations:
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∂v

∂t
+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B× rot B ,

∂ B

∂t
= rot (v ×B) , div B = 0 , (6.56)

∂ρ

∂t
+ div ρv = 0 ,

∂s

∂t
+ (v · ∇) s = 0 ,

p = p (ρ, s) .

The divergent form corresponds to the conservation laws for
energy, momentum, mass and magnetic flux:

∂

∂t

(
ρv2

2
+ ρε +

B2

8π

)
= − div G , (6.57)

∂

∂t
ρ vα = − ∂

∂rβ

Π ∗
αβ , (6.58)

∂ρ

∂t
= − div ρv , (6.59)

∂ B

∂t
= rot (v ×B ) , (6.60)

div B = 0 , (6.61)

p = p (ρ, s) . (6.62)

Here the energy flux and the momentum flux tensor are

G = ρv

(
v2

2
+ w

)
+

1

4π

(
B2 v − (B · v)B

)
(6.63)

and

Π ∗
αβ = p δαβ + ρ vαvβ +

1

4π

(
B2

2
δαβ −BαBβ

)
. (6.64)
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6.3.3 The ‘frozen field’ theorem

The magnetic flux conservation law (6.60) written in the integral form

d

dt

∫

S

B · dS = 0

allows us to represent the magnetic field as a set of field lines attached
to the medium, as if they were ‘frozen into’ it.

For this reason, (6.60) is referred to as the ‘freezing-in’ equation.

The “frozen field” theorem can be formulated as follows.

In the ideally conducting medium, the field lines move to-
gether with the plasma. A medium motion conserves not
only the magnetic flux but each of the field lines as well.

Let us imagine a thin tube of field lines (Fig. 6.3).

There is no magnetic flux through any part of the surface formed
by the boundary field lines that intersect the closed curve L.

Hence, the “fluid particles” that are initially in the same flux
tube must remain in the flux tube.

In ideal MHD flows, magnetic field lines are therefore material-
ized and are unbreakable because the flux tube links the same fluid
particles.

As a result its topology cannot change.

Fluid particles which are not initially on a common field line cannot
become linked by one later on.

This general topological constraint restricts the ideal
MHD motions, forbidding a lot of motions that would oth-
erwise appear.
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B

L

v

x
y

z

Sd

FP
FP

Figure 6.3: The field-flux tube through the surface dS moves
with a plasma with velocity v. L is the “liquid contour”
bounding the surface dS. The “fluid particles” (FP ) that
are initially in this flux tube remain in the same tube.

Conversely, the fluid particle motion, whatever its complexity, may
create situations where the magnetic field structure becomes itself very
complex.

∗ ∗ ∗

In general, the field intensity B is a local quantity.

However the magnetic field lines (even in vacuum) are integral
characteristics of the field.

Their analysis becomes more complicated.

Nonetheless, an investigation of non-local structures of magnetic
fields is fairly important in plasma astrophysics.

The geometry of the field lines appears in different ways in the
equilibrium criteria for astrophysical plasma.
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Much depends on whether the field lines are concave or convex,
on the so-called specific volume of magnetic flux tubes.

However even more depends on the presence of X-type points, as
well as on other topological characteristics, e.g. the global magnetic
helicity.

6.4 Magnetic reconnection

Reconnection of magnetic field lines is the physical process which in-
volves a breakdown of the “frozen field” theorem.

The effects of electric resistivity, normally negligible in the
large, become locally dominant

with dramatic consequences in the large-scale plasma flows and mag-
netic field configuration.

Reconnection changes topology of magnetic field.

The origin of the concept of reconnection lies in an attempt by Gio-
vanelli (1946) to explain solar flares.

Reconnection is the means by which energy stored in magnetic
fields is released rapidly to produce such phenomena as solar flares
and magnetospheric substorms.

Furthermore, reconnection plays important roles in many areas of
astrophysics.

Depending on complexity of fields and conditions, reconnection
can occur over an extended region in space or can be “patchy” and
“unpredictable”.

For example, in the Earth’s magnetosphere the reconnecting cur-
rent layers (RCLs) are formed by the interaction between the solar
wind and the geomagnetic field.

Such RCLs have finite extents, and their boundary conditions
often change rapidly.

On the contrary,
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Figure 6.4: The Wind , ACE and Cluster spacecraft on 2
February 2002: The spacecraft positions are shown in units
of Earth radius (R

E
) and in geocentric solar ecliptic coor-

dinates.

in the solar wind, the magnetic field orientations on the two
sides of the interplanetary current layers are usually well
defined, and the boundary conditions seem to be relatively
stable.

Phan et al. (2006) report the 3-spacecraft observations of plasma
flow associated with large-scale reconnection in the solar wind (Fig. 6.4).
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j

B

CL

Ω
M

Figure 6.5: A “wavy ecliptic current” layer (CL). The Sun
is the center of an extensive layer.

In the most astrophysical situations, the reconnection pro-
cess is predictable and occurs in an internal scale of a phe-
nomenon, which is responsible to the initial and boundary
conditions.

In the solar wind the scale of a current layer (CL) around the Sun can
be very large (Fig. 6.5).

The current layer (CL) separates the fields of nearly opposite direc-
tions.

The average plane of the layer is approximately the plane of the
equator of the Sun’s average magnetic dipole (M) field.

On the other hand, the high-speed solar wind that originates in
coronal holes is permeated by evolved Alfvén-type fluctuations asso-
ciated with MHD turbulence.

The spacecraft Wind allows us to study reconnection in this turbu-
lent flow.
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The Wind observations demonstrate that

reconnection is one way in which the solar wind turbulence
is dissipated and the high-speed wind is heated far from the
Sun.

In the solar wind, the kinetic and thermal energies of plasma exceed
the magnetic energy.

We neglect the magnetic force as compared to the inertia force of
moving plasma and its pressure gradient.

We call such a process as reconnection in a weak magnetic field.

Another example of this phenomenon is the photospheric reconnec-
tion.

Reconnection in a strong magnetic field is a fundamental feature of
astrophysical plasmas like the solar corona.

Such reconnection explains an accumulation of magnetic energy and
a sudden release of this energy, a flare.

This phenomenon is accompanied by fast ejections of plasma, pow-
erful flows of heat and hard electromagnetic radiation, by acceleration
of particles.

6.5 Practice: Exercises and Answers

Exercise 6.1. Estimate the magnetic Reynolds number in the solar
corona.

Answer.

Taking characteristic values of the parallel conductivity as estimated
in Exercise 5.1:

σ ‖ = σ ∼ 1016 − 1017 s−1 ,

we obtain
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Rem =
vL

νm

∼ 1011 − 1012 , (6.65)

if the length and velocity, L ∼ 104 km and v ∼ 10 km s−1.

Exercise 6.2. Show that

in the solar corona, usual viscosity of plasma can be a much
more important dissipative mechanism than electric resistiv-
ity.

Answer.

The characteristic value of kinematic viscosity

ν =
η

ρ
≈ 3× 1015 cm2 s−1.

Here Tp ≈ 2 × 106 K and np ≈ ne ≈ 2 × 108 cm−3 were taken as the
typical proton temperature and density.

If the length and velocity, L ∼ 109 cm and v ∼ 106 cm s−1, then
the ordinary Reynolds number

Re =
vL

ν
∼ 0.3 . (6.66)

Thus

Rem À Re .
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Chapter 7

MHD in Astrophysics

MHD is appropriate for many phenomena in astrophysical
plasma, that take place on a relatively large scale.

The non-relativistic MHD is applied to dynamo theory, flows
in the solar atmosphere, flares, coronal heating, solar and
stellar winds.

Relativistic MHD describes well accretion disks near rela-
tivistic objects, and relativistic jets.

7.1 The main approximations in ideal MHD

7.1.1 Dimensionless equations

The equations of MHD constitute a set of nonlinear differential equa-
tions in partial derivatives.

The order of the set is rather high, and its structure is complicated.

To formulate a problem, we have to know the initial and bound-
ary conditions admissible by this set of equations.

To do this, in turn, we have to know the type of equations, in the
sense adopted in mathematical physics.

To formulate a problem, we usually use one or another approxima-
tion, which makes it possible to point up and isolate the main effect.

149
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For instance, if the magnetic Reynolds number is small, a
plasma moves comparatively easily with respect to magnetic field.

This is the case in laboratory and technical devices.

The opposite approximation is that of large magnetic Reynolds
numbers, when the magnetic field ‘freezing in’ takes place in plasma.

This approximation is quite characteristic of the astrophysical plasma.

How can we isolate the main effect in a phenomenon and correctly
formulate the problem? – From the above examples, the following rule
suggests itself:

take the dimensional parameters of a phenomenon, combine
them into dimensionless combinations, calculate their values,
and use a corresponding approximation in the dimensionless
equations.

Such an approach is effective in hydrodynamics.

Let us start with the ideal MHD equations:

∂v

∂t
+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B× rot B , (7.1)

∂ B

∂t
= rot (v ×B) , (7.2)

∂ρ

∂t
+ div ρv = 0 , (7.3)

∂s

∂t
+ (v · ∇) s = 0 , (7.4)

div B = 0 , (7.5)

p = p (ρ, s) . (7.6)

Let the quantities
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L, τ, v, ρ0 , p0 , s0 , B0

be the characteristic values of length, time, velocity, density, pressure,
entropy and field strength, respectively.

Rewrite Equations (7.1)–(7.6) in the dimensionless variables

r∗ =
r

L
, t∗ =

t

τ
, . . . B∗ =

B

B0

.

Omitting the asterisk, we obtain the equations in dimensionless vari-
ables:

ε2

{
1

δ

∂v

∂t
+ (v · ∇)v

}
= − γ2 ∇p

ρ
− 1

ρ
B× rot B , (7.7)

∂ B

∂t
= δ rot (v ×B) , (7.8)

∂ρ

∂t
+ δ div ρv = 0 , (7.9)

∂s

∂t
+ δ (v · ∇) s = 0 , (7.10)

div B = 0 , (7.11)

p = p (ρ, s) . (7.12)

Here

δ =
vτ

L
, ε2 =

v2

V 2
A

, γ2 =
p0

ρ0V 2
A

(7.13)

are three dimensionless parameters;

V
A

=
B0√
4πρ0

(7.14)
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is the characteristic value of the Alfvén speed (see Exercise 7.1).

If the gravitational force is taken into account, Equation (7.7) con-
tains another dimensionless parameter,

gL/V 2
A

,

where g is the gravitational acceleration.

The analysis of these parameters allows us to separate the approxi-
mations which are possible in the ideal MHD.

7.1.2 Weak magnetic fields in astrophysical plasma

We begin with the assumption that

ε2 À 1 and γ2 À 1 . (7.15)

As is seen from Equation (7.7), in the zero-order approximation relative
to the small parameters

ε−2 and γ−2 ,

we neglect the magnetic force as compared to the inertia force and
the pressure gradient.

In subsequent approximations, the magnetic effects are treated as
small corrections to the hydrodynamic ones.

A lot of problems of plasma astrophysics are solved in this approx-
imation, termed the weak magnetic field approximation.

Among the simplest of them are the ones concerning the weak field’s
influence on hydrostatic equilibrium.

An example is the problem of the influence of magnetic field on the
equilibrium of a self-gravitating plasma ball (a star, the magnetoid of
quasar’s kernel etc.).

Some other problems are in fact analogous to the mentioned ones.

They are called kinematic problems, since
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they treat the influence of a given plasma flow on magnetic
field; the reverse influence is considered to be negligible.

Such problems are reduced to finding the magnetic field resulting from
the known velocity field.

An example is the magnetic field amplification and support by sta-
tionary plasma flows (magnetic dynamo).

The simplest example is the magnetic field amplification by differ-
ential rotation.

A leading candidate to explain the origin of large-scale magnetic
fields in astrophysical plasma is the turbulent dynamo theory.

7.1.3 Strong magnetic fields in plasma

The opposite approximation – that of the strong field – reflects the
specificity of MHD to a greater extent.

This approximation is valid when the magnetic force

Fm = − 1

4π
B× rot B (7.16)

dominates all the others (inertia force, pressure gradient, etc.).

In Equation (7.7), the magnetic field is a strong one if

ε2 ¿ 1 and γ2 ¿ 1 , (7.17)

i.e. the magnetic energy density greatly exceeds that of the kinetic and
thermal energies:

B 2
0

8π
À ρ0v

2

2
and

B 2
0

8π
À 2n0kB

T0 .

From Equation (7.7) it follows that, in the zeroth order with respect
to the small parameters (7.17), the magnetic field is force-free:
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B× rot B = 0 . (7.18)

This conclusion is quite natural:

if the magnetic force dominates all the others, the magnetic
field must balance itself in the region under consideration.

Condition (7.18) means that electric currents flow parallel to magnetic
field lines.

If, in addition, electric currents are absent in some region, then the
strong field is simply potential:

rot B = 0 , B = ∇Ψ , ∆Ψ = 0 . (7.19)

Let us consider the first order in the small parameters (7.17).

If they are not equally significant, there are two possibilities.

(a) We suppose, at first, that

ε2 ¿ γ2 ¿ 1 . (7.20)

Then we neglect the inertia force in Equation (7.7) as compared to the
pressure gradient.

Decomposing the magnetic force into a magnetic tension force
and a magnetic pressure gradient,

Fm = − 1

4π
B× rot B =

1

4π
(B · ∇)B−∇ B2

8π
, (7.21)

we obtain the following dimensionless equation:

(B · ∇)B = ∇
(

B2

2
+ γ2p

)
. (7.22)

Owing to the gas pressure gradient, the magnetic field differs from
the force-free one:
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the magnetic tension force (B·∇)B/4π must balance not only
the magnetic pressure gradient but that of the gas pressure
as well.

Obviously the effect is proportional to the small parameter γ2.

This approximation is naturally called the magnetostatics since
v = 0.

It works in regions of a strong magnetic field where the gas pressure
gradients are large, e.g., in coronal loops and reconnecting current
layers in the solar corona.

(b) The inertia force also causes the magnetic field to deviate
from the force-free one:

ε2

{
1

δ

∂v

∂t
+ (v · ∇)v

}
= − 1

ρ
B× rot B . (7.23)

Here we ignored the pressure gradient as compared with the inertia
force.

This is the case

γ2 ¿ ε2 ¿ 1 . (7.24)

The approximation corresponding (7.24) is termed the approximation
of strong field and cold plasma.

The main applications of this approximation are the solar atmo-
sphere and the Earth’s magnetosphere.

Both objects are well studied from the observational viewpoint.

So we can proceed with confidence from qualitative interpreta-
tion to the construction of quantitative models.

The presence of a strong field and a rarefied plasma is common for
both phenomena.
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A sufficiently strong magnetic field easily moves a compar-
atively rarefied plasma in many non-stationary phenomena in
space.

Some astrophysical applications will be discussed in the following
two Sections.

∗ ∗ ∗

In closing, let us consider the dimensionless parameter

δ = vτ/L .

It characterizes the relative role of
the local ∂/∂t
and transport (v · ∇)
terms in the substantial derivative

d

dt
=

1

δ

∂

∂t
+ (v · ∇) .

If δ À 1, the flow can be considered to be stationary

ε2 (v · ∇)v = − 1

ρ
B× rot B . (7.25)

If δ ¿ 1, the transport term (v · ∇) can be ignored, and the equation
of motion takes the form

ε2 ∂v

∂t
= − 1

ρ
B× rot B , (7.26)

other equations becoming linear.

This case corresponds to small small perturbations.

If need be, the right-hand side of Equation (7.26) can be linearized
too.
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Generally the parameter

δ ≈ 1 ,

and the MHD equations in the approximation of strong field and cold
plasma take the following dimensionless form:

ε2 dv

dt
= − 1

ρ
B× rot B , (7.27)

∂ B

∂t
= rot (v ×B ) , (7.28)

∂ρ

∂t
+ div ρv = 0 . (7.29)

In the next Chapter we shall consider some continuous flows, which are
described by these equations.

7.2 Accretion disks of stars

7.2.1 Angular momentum transfer

Magnetic fields are discussed as a means of angular transport in the
accretion disk.

Interest in the magnetic fields in binary stars steadily increased
after the discovery of the nature of AM Herculis.

The optical counterpart of the soft X-ray source has polarization in
the V and I spectral bands.

This suggested the presence of a strong field, B ∼ 108 G, assuming
the fundamental cyclotron frequency to be observed.

Other similar systems were soon discovered.

Evidence for strong fields was found in the X-ray binary pulsars
and the intermediate polar binaries.
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MHD in binary stars is now an area of central importance in
stellar astrophysics (Campbell, 1997).

D

L
1

SS

L
2

Figure 7.1: A binary system with an accretion disk. The
tidally and rotationally distorted secondary star SS loses
plasma from the unstable L1 point. The resulting plasma
stream feeds an accretion disk D, centered on the primary
star.

The disk is fed by the plasma stream originated in the L1 region
(Fig. 7.1) of the secondary star.

In a steady state,

plasma is transported through the disk at the rate it is sup-
plied by the stream and the angular momentum is advected
outwards.

Such advection requires coupling between rings of rotating plasma; the
ordinary viscosity is too weak to provide this.

Hence some form of anomalous viscosity must be invoked.

Purely hydrodynamic turbulence does not produce sustained
outward transport of angular momentum.

MHD turbulence greatly enhances angular momentum transport
(Balbus and Papaloizou, 1999).
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Turbulent viscous and magnetic stresses cause radial ad-
vection of the angular momentum via the azimuthal forces.

7.2.2 Accretion in cataclysmic variables

Cataclysmic variables (CVs) are binary systems composed of a white
dwarf (primary star) and a late-type, main-sequence companion (sec-
ondary star).

The way this plasma falls towards the primary depends on the in-
tensity of a magnetic field of the white dwarf.

The strong field (B >∼ 107 G) may entirely dominate the accretion
flow.

The magnetic field is strong enough to synchronize the white dwarf
rotation (spin) with the orbital period.

No disk is formed.

Instead, the field channels accretion towards its polar regions.

Such synchronous systems are known as AM Herculis binaries or
polars.

The intermediate (B ∼ 2− 8× 106 G) field primary stars harbor
magnetically truncated accretion disks which extend until magnetic
pressure begins to dominate.

Presumably the plasma is finally accreted onto the magnetic poles
of the white dwarf.

The asynchronous systems are known as DQ Herculis binaries or
intermediate polars (IPs).

The accretion geometry strongly influences the emission properties
at all wavelengths and its variability.

The knowledge of the behavior in all energy domains can allow one
to locate the different accreting regions.
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The white dwarf LHS 2534 offers the first empirical data of the
Zeeman effect on neutral Na, Mg, and both ionized and neutral Ca.

The Na I splitting results in a field strength estimate of 1.92×106 G.

7.2.3 Accretion disks near black holes

In the binary stars discussed above, there is an abundance of evi-
dence for accretion disks:

(a) double-peaked emission lines,

(b) eclipses of an extended light source centered on the primary,

(c) eclipses of the secondary star by the disk.

The case of accretion disks in active galactic nuclei (AGN) is less
clear.

Nonetheless the disk accretion onto a super-massive black hole
is the commonly accepted model for these objects.

As the plasma accretes in the gravitational field of the central mass,
magnetic field lines are convected inwards, amplified and finally de-
posited on the horizon of the black hole.

As long as a magnetic field is confined by the disk, a differential
rotation causes the field to wrap up tightly, becoming highly sheared
and predominantly azimuthal in orientation.

A dynamo in the disk may be responsible for the maintenance and
amplification of the magnetic field.

In the standard model of an accretion disk (Shakura and Sunya-
ev, 1973; Novikov and Thorne, 1973), the gravitational energy is locally
radiated from the optically thin disk.

However the expected power far exceeds the observed lumi-
nosity.

There are two possible explanations:

(a) the accretion occurs at extremely low rates, or
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(b) the accretion occurs at low radiative efficiency.

Advection results in a structure different from the standard model.

The advection process physically means that

the energy generated via viscous dissipation is restored as en-
tropy of the accreting plasma flow rather than being radi-
ated.

An optically thin advection-dominated accretion flow (ADAF)
seemed to be a model that can reproduce the observed spectra of black
hole systems such as AGN and Galactic black hole candidates.

7.2.4 Flares in accretion disk coronae

Following the launch of several X-ray satellites, astrophysicists have
tried to observe and analyze the variations of high energy flux from
black hole candidates.

It has appeared that

there are many relationships between flares in the solar
corona and ‘X-ray shots’ in accretion disks.

For example, the peak interval distribution of Cyg X-1 shows that the
occurrence frequency of large X-ray shots is reduced.

A second large shot does not occur soon after a previous large shot.

This suggests the existence of energy-accumulation structures,
such as non-potential magnetic fields in the solar corona.

It is likely that accretion disks have a corona.

Galeev et al. (1979) suggested that the corona is confined in strong
magnetic loops which have buoyantly emerged from the disk.

Magnetic reconnection of buoyant fields in the lower den-
sity surface regions may supply the energy source for a hot
corona.
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The existence of a disk corona with a strong field raises the possibility
of a wind flow similar to the solar wind.

This would result in angular momentum transport away from
the disk, which could have some influence on the inflow.

Another feature is the possibility of a flare energy release similar
to solar flares.

When a plasma in the disk corona is optically thin and has a
dominant magnetic pressure, the circumstances are similar to the
solar corona.

Therefore

it is possible to imagine some similarity between the mecha-
nisms of solar flares and X-ray shots in accretion disk coronae.

Besides the effect of heating the the disk corona, reconnection is
able to accelerate particles to high energies.

Some geometrical and physical properties of the flares in disk coro-
nae can be inferred from X-ray observations of Galactic black hole can-
didates.

7.3 Astrophysical jets

7.3.1 Jets near black holes

Jet-like phenomena, including relativistic jets, are observed on a wide
range of scales in accretion disk systems.

AGN show extremely energetic outflows extending beyond the
outer edge of a galaxy in the form of strongly collimated jets.

There is evidence that magnetic forces are involved in the
driving mechanism and that the magnetic fields also provide the
collimation of relativistic flows.
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Rotating black holes are thought to be the prime-mover in centers
of galaxies.

The gravitational field of rotating black holes is more complex
than that of non-rotating ones.

The weak-gravity (far from the hole) low-velocity coordinate ac-
celeration of uncharged particle

d2r

dt2
= g +

dr

dt
×H gr . (7.30)

This looks like the Lorentz force with the electric field E replaced by
g, the magnetic field B replaced by the vector

H gr = rot A gr ,

and the electric charge e replaced by the particle mass m.

These analogies lie behind the words “gravitoelectric” and “gravito-
magnetic” to describe the gravitational acceleration field g and to
describe the “shift function” Agr (Exercise 7.6).

Thus, far from the horizon, the gravitational acceleration

g = −M

r2
er (7.31)

is the radial Newtonian acceleration, and
the gravitomagnetic field

Hgr = 2
J− 3 (J · er) er

r3
(7.32)

is a dipole field.

The role of dipole moment is played by the hole’s angular momen-
tum

J =
∫

( r× ρmv) dV .
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The gravitomagnetic force drives an accretion disk into the
hole’s equatorial plane and holds it there

(Fig. 7.2).

H

J

gr

D

jet

V

Figure 7.2: An accretion disk D around a rotating black hole
is driven into the hole’s equatorial plane at small radii by
a combination of gravitomagnetic forces (action of the
gravitomagnetic field Hgr on orbiting plasma) and viscous
forces.

At radii where the bulk of the disk’s gravitational energy is released
and where the hole-disk interactions are strong,

there is only one geometrically preferred direction along
which a jet might emerge, which coincides with the rotation
axis of the black hole.

The jet might be produced by winds off the disk, in other cases by
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electrodynamic acceleration of the disk, and in others by currents in
the hole’s magnetosphere.

However whatever the mechanism, the jet presumably is locked to
the hole’s rotation axis.

The black hole acts as a gyroscope to keep the jet aligned.

It is very difficult to torque a black hole.

The fact accounts for the constancy of the observed jet directions
over length scales as great as millions of light years and thus over
time scales of millions of years or longer.

∗ ∗ ∗

In the highly-conducting medium, the gravitomagnetic force cou-
ples with electromagnetic fields over Maxwell’s equations.

This effect has interesting consequences for the magnetic fields ad-
vected towards the black hole.

It leads to a gravitomagnetic dynamo which amplifies any seed
field near a rotating compact object.

This process builds up the dipolar magnetic structures which
may be behind the bipolar outflows seen as relativistic jets.

7.3.2 Relativistic jets from disk coronae

Relativistic jets are produced perpendicular to the accretion disk plane
(Fig. 7.2) around a super-massive black hole in an AGN.

The shock of the jets on intergalactic media is considered as being
able to accelerate particles up to the highest energies, say 1020 eV for
cosmic rays.

This hypothesis need, however, to be completed by some necessary
ingradients since such powerful galaxies are rare objects.



166 Chapter 7. MHD in Astrophysics

The relativistic jets may be powered by acceleration of protons
in a corona above an accretion disk.

The acceleration arises as a consequence of the shearing motion of
the magnetic field lines in the corona, that are anchored in the under-
lying Keplerian disk.

Particle acceleration in the corona leads to the development of a
pressure-driven wind.

It passes through a critical point and subsequently transforms into
a relativistic jet at large distances from the black hole.

7.4 Practice: Exercises and Answers

Exercise 7.1. Evaluate the Alfvén speed in the solar corona above a
large sunspot.

Answer.

From definition we find

V
A
≈ 2.18× 1011 B√

n
, cm s−1 . (7.33)

Above a sunspot B ≈ 3000 G, n ≈ 2× 108 cm−3 .

Thus (7.33) gives unacceptably high values:

V
A
≈ 5× 1010 cm s−1 > c .

This means that

in a strong magnetic field and low density plasma, the Alfvén
waves propagate with velocities approaching the light speed c .

So the non-relativistic formula (7.33) has to be corrected by a rela-
tivistic factor:
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V rel
A

=
B√
4πρ

1√
1 + B2/4πρc2

, (7.34)

which agrees with (7.14) if B2 ¿ 4πρc2.

Therefore the relativistic Alfvén wave speed is always smaller than the
light speed.

For values of the magnetic field and plasma density mentioned above,

V rel
A

≈ 2× 1010 cm s−1.

Exercise 7.2. Discuss properties of the Lorentz force in terms of the
Maxwellian stress tensor (6.11).

Exercise 7.3. Show that the magnetic tension force is directed
to the local centre of curvature.

Exercise 7.4. For the conditions in the corona, used in Exercise 7.1,
estimate the parameter γ2.

Answer.

Substitute p0 = 2n0kB
T0 in definition (7.13):

For the temperature T0 ≈ 2×106 K and magnetic field B0 ≈ 3000 G

γ2 ∼ 10−7 .

Exercise 7.5. By using formula (6.63) for the energy flux in ideal
MHD, find the magnetic energy influx into a reconnecting current
layer.

Answer.

In this simplest approximation, near the layer, the magnetic field B ⊥
v.

In formula (6.63) the product B · v = 0 and the energy flux density

G = ρv

(
v2

2
+ w

)
+

B2

4π
v . (7.35)
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If the approximation of a strong field is satisfied, the last term in
(7.35) is dominating, and we find the Poynting vector directed into the
current layer

G
P

=
B2

4π
v . (7.36)

Exercise 7.6. Consider a weakly gravitating, slowly rotating body
such as the Sun, with all nonlinear gravitational effects neglected.

Compute the gravitational force and gravitomagnetic force from
the linearized Einstein equations (see Landau and Lifshitz, Classical
Theory of Field).

Show that, for a time-independent body, these equations are iden-
tical to the Maxwell equations:

rotg = 0 , div g = − 4π Gρm , (7.37)

rot Hgr = − 16π G ρmv , div Hgr = 0 . (7.38)

Here the differences are:

(a) two minus signs because gravity is attractive rather than
repulsive,

(b) the factor 4 in the rot Hgr equation,

(c) the presence of the gravitational constant G,

(d) the replacement of charge density ρ q by mass density ρm, and

(e) the replacement of electric current j by the mass flow ρmv.
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Plasma Flows in a Strong
Magnetic Field

A strong magnetic field easily moves a rarified plasma in
many non-stationary phenomena in the astrophysical envi-
ronment.

The best studied example is the solar flares which strongly
influence the interplanetary and terrestrial space.

8.1 The general formulation of a problem

As was shown above, the set of MHD equations for an ideal medium
in the approximation of strong field and cold plasma is characterized
only by the small parameter ε2 = v2/V 2

A
:

ε2 dv

dt
= − 1

ρ
B× rot B , (8.1)

∂ B

∂t
= rot (v ×B) , (8.2)

∂ρ

∂t
+ div ρv = 0 . (8.3)

Let us represent all the unknown quantities in the form

169
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f(r, t) = f (0)(r, t) + ε2f (1)(r, t) + . . . .

Then we try to find the solution in three consequent steps.

(a) To zeroth order with respect to ε2, the magnetic field is deter-
mined by the equation

B (0) × rot B (0) = 0 . (8.4)

This must be supplemented with a boundary condition, which generally
depends on time:

B (0) (r, t) |S = f 1 (r, t) . (8.5)

Here S is the boundary of the region G (Fig. 8.1), in which the force-

x

z
v

v

||

⊥

B

G

S

y

Figure 8.1: The boundary and initial conditions for the ideal
MHD problems.

free-field Equation (8.4) applies.

The strong force-free field, changing in time according to the
boundary condition (8.5), sets the plasma in motion.
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(b) Kinematics of this motion is uniquely determined by two con-
ditions.

The first one signifies the orthogonality of acceleration to the mag-
netic field lines

B (0) · dv (0)

dt
= 0 . (8.6)

This equation is the scalar product of Equation (8.1) and the vec-
tor B(0).

The second condition is a consequence of the freezing-in Equa-
tion (8.2)

∂ B (0)

∂t
= rot

(
v(0) ×B (0)

)
. (8.7)

Equations (8.6) and (8.7) determine the velocity v(0)(r, t), if the initial
condition inside the region G is given:

v
(0)
‖ (r, 0) |G = f 2 (r) . (8.8)

Here v
(0)
‖ is the velocity component along the field lines.

The velocity component across the field lines, v
(0)
⊥ , is uniquely de-

fined by the freezing-in Equation (8.7) at any moment, including the
initial one.

Therefore we do not need the initial condition for v
(0)
⊥ .

(c) Since we know the velocity field v(0)(r, t), the continuity equa-
tion

∂ρ (0)

∂t
+ div ρ (0)v(0) = 0 (8.9)

allows us to find the plasma density ρ (0)(r, t), if we know its initial
distribution
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ρ (0)(r, 0) |G = f3 (r) . (8.10)

Therefore,

at any moment of time,

the field B (0) (r, t) is found from Equation (8.4) and the boundary
condition (8.5).

Thereupon the velocity v(0)(r, t) is determined from Equations (8.6)
and (8.7) and the initial condition (8.8).

Finally the continuity Equation (8.9) and the initial condition (8.10)
give the plasma density ρ (0) (r, t).

We restrict our attention to the zeroth order relative to the pa-
rameter ε2, neglecting the field deviation from a force-free state.

The question of the existence of solutions will be considered later
on, using 2D problems.

8.2 The formalism of 2D problems

Being relatively simple from the mathematical viewpoint, 2D ideal
MHD problems allow us to gain some general knowledge concerning
the actual flows of plasma with the frozen-in strong magnetic field.

The 2D problems are sometimes a close approximation of the real
3D flows and can be used to compare the theory with experiments and
observations.

There are two types of problems treating the plane flows of
plasma, i.e. the flows with the velocity field

v = { vx(x, y, t), vy(x, y, t), 0 } .

All the quantities are dependent on variables x, y and t.
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8.2.1 The first type of problems

The first type incorporates the problems with a magnetic field which is
everywhere parallel to the z axis:

B = { 0, 0, B (x, y, t) } .

The corresponding current is parallel to the (x, y) plane:

j = { jx(x, y, t), jy(x, y, t), 0 } .

As an example, let us discuss the effect of a longitudinal magnetic
field in a reconnecting current layer (RCL).

Under real conditions, reconnection does occur not at the zeroth
lines but rather at the separators.

The latter differ from the zeroth lines only in that the separators
contain the longitudinal field (Fig. 8.2).

B

B ||

y

x

Figure 8.2: A longitudinal
field B ‖ parallel to the
z axis is superimposed on
the 2D hyperbolic field in
the plane (x, y).

With appearance of the longitudinal field, the force balance in the
RCL is changed.

The field and plasma pressure outside the RCL must balance not
only the gas pressure but also that of the longitudinal field inside the
RCL (Fig. 8.3)
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B

j

j
x

y x

y

B | |

B | |

Figure 8.3: A model of a RCL with a longitudinal compo-
nent B ‖ of magnetic field.

B ‖ =
{

0, 0, B ‖ (x, y, t)
}

.

If the longitudinal field accumulated in the RCL during reconnec-
tion, the field pressure B 2

‖/8π would considerably limit the layer com-
pression and the reconnection rate.

However the solution of the problem of the first type with respect
to B ‖ shows that another effect is of importance in the real plasma
with finite conductivity.

The longitudinal field compression in the RCL produces a gra-
dient of this field and a corresponding current circulating in the
transversal plane (x, y).

This current is represented schematically in Fig. 8.3.

Dissipation of the circulating current leads to longitudinal field
diffusion outwards from the RCL.

More exactly, because of dissipation, plasma moves into the RCL
relatively free with respect to the longitudinal component of magnetic
field, thus limiting its accumulation in the RCL.



8.2. 2D Problems 175

8.2.2 The second type of MHD problems

8.2.2 (a) Magnetic field and its vector potential

The 2D problems of the second type treat the plane flows

v = { vx(x, y, t), vy(x, y, t), 0 } ,

associated with the plane magnetic field

B = {Bx(x, y, t), By(x, y, t), 0 } .

The currents corresponding to this field are parallel to the z axis

j = { 0, 0, j (x, y, t) } .

The vector-potential A has an its only non-zero component:

A = { 0, 0, A (x, y, t) } .

The magnetic field B is defined as

B =

{
∂A

∂y
, − ∂A

∂x
, 0

}
. (8.11)

The scalar function A (x, y, t) is often termed the vector potential.

This function is quite useful, owing to its properties.

Property 1.
Substitute (8.11) in the differential equations describing the mag-

netic field lines

dx

Bx

=
dy

By

=
dz

Bz

.

These equations imply parallelism of the vector

d l = {dx, dy, dz}
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to the vector B = {Bx, By, Bz}.
In the case under study

Bz = 0, dz = 0 ,

and

dx

∂A/∂y
= − dy

∂A/∂x

or

∂A

∂x
dx +

∂A

∂y
dy = 0 .

On integrating the last, we come to the relation

A (x, y, t) = const for t = const .
(8.12)

This is the equation for a family of magnetic field lines in the plane
z = const at the moment t.

Property 2.
Let L be a curve in the plane (x, y) and d l an arc element along

this curve (Fig. 8.4).

2

1 BL

d l

d S

Figure 8.4: The curve L con-
nects the points 1 and 2 sit-
uated in different field lines.

Let us calculate the magnetic flux d Φ through the arc element d l.
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By definition,

d Φ = B · dS = B · (ez × d l ) = B ·

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

0 0 1

dx dy 0

∣∣∣∣∣∣∣∣∣∣∣

=

= B · { (−dy) ex + dx ey } =

= −Bx dy + By dx . (8.13)

On substituting (8.11) in (8.13) we find

d Φ = −∂A

∂y
dy − ∂A

∂x
dx = − dA .

On integrating this along the curve L from point 1 to point 2 we obtain
the magnetic flux

Φ = A2 − A1 .

Thus the fixed value of the potential A is not only the field line ‘tag’
determined by formula (8.12);

the difference of values of the vector potential A on two field
lines is equal to the magnetic flux between them.

Simple rule:

Plot the field lines corresponding to equidistant values of A.

Property 3.

Let us substitute definition (8.11) in the freezing-in equation.

We obtain the following equation

rot
dA

dt
= 0 .
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Disregarding a gradient of an arbitrary function and considering the
second type of 2D problems, we have

dA

dt
≡ ∂A

∂t
+ (v · ∇)A = 0 . (8.14)

This equation means that the lines

A (x, y, t) = const (8.15)

are Lagrangian lines: they move together with plasma.

According to (8.12) they are composed of the field lines.

Hence Equation (8.14) expresses the magnetic field freezing in
plasma.

Thus we have one of the integrals of motion

A (x, y, t) = A (x0, y0, 0) ≡ A0
(8.16)

at an arbitrary t.

Here
x0, y0 are the coordinates of a “fluid particle” at the initial time

t = 0;
x, y are the coordinates of the same particle at a moment of time t

or the coordinates of any other particle situated on the same field
line A0 at the moment t.

Property 4.
Equation of motion (8.1) rewritten in terms of the vector poten-

tial A(x, y, t) is of the form

ε2 dv

dt
= −1

ρ
∆A∇A . (8.17)

In the zeroth order relative to the small parameter ε2, outside the
zeroth points (where∇A = 0) and the magnetic field sources (where
∆A 6= 0) we have:
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∆A = 0 .
(8.18)

So the vector potential is a harmonic function of variables x and y.

Hence, considering the (x, y) plane as a complex plane

z = x + i y ,

it is convenient to relate an analytic function F to the vector poten-
tial A:

F (z, t) = A (x, y, t) + i A+(x, y, t) . (8.19)

Here A+(x, y, t) is a conjugate harmonic function connected with
A (x, y, t) by the Cauchy-Riemann condition

A+(x, y, t) =
∫ (

− ∂A

∂y
dx +

∂A

∂x
dy

)
+ A+(t) =

= −
∫

B · d l + A+(t) ,

where A+(t) is a quantity independent of the coordinates x and y.

The function F (z, t) is termed the complex potential.

The magnetic field vector

B = Bx + i By = − i

(
dF

dz

)∗
, (8.20)

the asterisk denoting the complex conjugation.

Now we can apply the methods of the complex variable function
theory, in particular the method of conform mapping .

This has been done in order to determine the structure of mag-
netic field:
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• in vicinity of reconnecting current layer (Syrovatskii, 1971),

• in solar coronal streamers (Somov and Syrovatskii, 1972)

• in the Earth’s magnetosphere (Oberz, 1973),

• the accretion disk magnetosphere (Somov et al., 2003).

Markovskii and Somov (1989) generalized the Syrovatskii model by
attaching four shock MHD waves at the edges of the RCL.

The model reduces to the Riemann-Hilbert problem (in an analytical
form on the basis of the Christoffel-Schwarz integral) in order to analyze
the structure of magnetic field in vicinity of reconnection region (Bez-
rodnykh et al., 2007).

8.2.2 (b) Motion of the plasma and its density

The motion kinematics due to changes in a potential field is uniquely
determined by two conditions:

(i) the freezing-in condition and

(ii) the acceleration orthogonality with respect to the field lines

dv(0)

dt
×∇A(0) = 0 . (8.21)

Equation (8.21) is a result of eliminating the unknown ∆A(1) from two
components of the vector equation

dv(0)

dt
= − 1

ρ (0)
∆A(1)∇A(0) . (8.22)

If x(t) and y(t) are the coordinates of a fluid particle, Equa-
tions (8.21) and (8.14) are reduced to the ordinary differential equa-
tions (Somov and Syrovatskii, 1976).

Once the kinematic part of the problem is solved, the trajectories
of fluid particles are known:
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x = x (x0 , y0 , t) , y = y (x0 , y0 , t) . (8.23)

The fluid particle density change on moving along its trajectory is de-
termined by the continuity Equation (8.3), rewritten in the Lagrangian
form, and is equal to

ρ (x, y, t)

ρ0 (x0, y0)
=

dU0

dU
=
D (x0, y0)

D (x, y)
. (8.24)

Here d U0 is the initial volume of a particle, dU is the volume of the
same particle at a moment of time t;

D (x0, y0)

D (x, y)
=

∂x0

∂x

∂y0

∂y
− ∂x0

∂y

∂y0

∂x
(8.25)

is the Jacobian of the transformation that is inverse to the transforma-
tion (8.23).

The 2D equations of the strong-field-cold-plasma approximation are
relatively simple but useful for applications to astrophysical plasmas.

In particular, they enable us to study the fast plasma flows in the
solar atmosphere and to understand some aspects of the reconnection
process.

In spite of their numerous applications, the list of exact so-
lutions to them is rather poor. Still, we can enrich it signifi-
cantly,

relying on many astrophysical objects, for example in the accretion
disk coronae and some mathematical ideas.

8.3 The existence of continuous flows

Thus, in the strong-field-cold-plasma approximation, the MHD equa-
tions for a plane 2D flow of ideally conducting plasma (for the second-
type problems) are reduced, in the zeroth order in the small parameter
ε2, to the following closed set of equations:
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∆ A = 0 , (8.26)

dv

dt
×∇A = 0 , (8.27)

dA

dt
= 0 , (8.28)

∂ρ

∂t
+ div ρv = 0 . (8.29)

x

y

v

v

||

⊥

B

G

S

Figure 8.5: The boundary and initial conditions for a second-
type 2D problem.

The solution of this set is completely defined inside some region G
(Fig. 8.5) once the boundary condition is given at the boundary S

A (x, y, t) |S = f1 (x, y, t) (8.30)

together with the initial conditions inside the region G

v‖ (x, y, 0) |G = f2 (x, y) , (8.31)

ρ (x, y, 0) |G = f3 (x, y) . (8.32)
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Here v ‖ is the velocity component along field lines.

Once the potential A (x, y, t) is known, the transversal velocity com-
ponent is uniquely determined by the freezing-in Equation (8.28) and
is equal, at any moment including the initial one, to

v⊥(x, y, t) = (v · ∇A)
∇A

|∇A |2 = −∂A

∂t

∇A

|∇A |2 . (8.33)

The density ρ (x, y, t) is found from the continuity Equation (8.29)
and the initial density distribution (8.32).

The next Section is devoted to an example which may have appli-
cations.

8.4 Flows in a time-dependent dipole field

8.4.1 Plane magnetic dipole fields

Two parallel currents, equal in magnitude but opposite in direction, en-
gender the magnetic field which far from the currents can be described
by a complex potential

F (z) =
im

z
, m = me iψ (8.34)

and is called the plane dipole field.

The quantity

m =
2

c
I l

has the meaning of the dipole moment,

I is the current magnitude,

l is the distance between the currents.

Formula (8.34) corresponds to the dipole situated at the origin of
coordinates in the plane (x, y) and directed at an angle of ψ to the
x axis.
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m

x

y

Figure 8.6: The field lines of a plane magnetic dipole.

Let us consider the plasma flow caused by the change with time
of the strong magnetic field of the dipole

ψ = π/2 and
m = m(t) , m(0) = m0 .

(a) Let us find the first integral of motion.

According to(8.34), the complex potential

F (z, t) =
−m(t) x + i m(t) y

x2 + y2
. (8.35)

So, the field lines constitute a family of circles

A (x, y, t) = − m(t) x

x2 + y2
= const for t = const .

They have centres on the axis x and the common point x = 0, y = 0
in Fig. 8.6.

Therefore the freezing-in condition (8.16) results in a first integral
of motion
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mx

x2 + y2
=

m0 x0

x 2
0 + y 2

0

. (8.36)

Here x0, y0 are the coordinates of a fluid particle at the initial time
t = 0 .

(b) The second integral is easily found in the limit of small changes of
the dipole moment m (t) and respectively small plasma displacements.

Assuming the parameter

δ = vτ/L

to be small, Equation (7.26):

ε2 ∂v

∂t
= − 1

ρ
B× rot B ,

which is linear in velocity.

The integration over time (with zero initial values for the velocity)
allows us to reduce Equation (7.26) to the form

∂x

∂t
= K(x, y, t)

∂A

∂x
,

∂y

∂t
= K(x, y, t)

∂A

∂y
. (8.37)

Here K(x, y, t) is some function of coordinates and time.

Eliminating it from two Equations (8.37), we arrive at

∂y

∂x
=

∂A

∂y

/
∂A

∂x
. (8.38)

Thus, not only the acceleration but also the plasma displacements
are normal to the field lines.

For dipole field, we obtain an ordinary differential equation

dy

dx
=

2xy

x2 − y2
.

Its integral
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y

x2 + y2
= const

describes a family of circles, orthogonal to the field lines, and
presents fluid particle trajectories.

In particular, the trajectory of a particle, situated at a point (x0, y0)
at the initial time t = 0, is an arc of the circle

y

x2 + y2
=

y0

x 2
0 + y 2

0

(8.39)

from the point (x0, y0) to the point (x, y) on the field line (8.36) (Fig. 8.7).

Figure 8.7: A trajectory of
a fluid particle driven by
a changing magnetic field
of a plane dipole. m

x

y

y

yx,

x
0

0

t = 0

0

The integrals of motion (8.36) and (8.39) completely determine the
plasma flow in terms of the Lagrangian coordinates

x = x (x0, y0, t) , y = y (x0, y0, t) . (8.40)

This flow has a simple form:

the particles are connected with the magnetic field lines and move
together with them in a transversal direction.

This is a result of considering small displacements under the action
of the force perpendicular to the field lines.
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(c) The plasma density change.

On calculating the Jacobian for the transformation given by (8.36)
and (8.39), we obtain the formula

ρ (x, y, t)

ρ0

=
(

m

m0

)
m 4

0

(m2x2 + m 2
0 y2)4

{[
m2x4 + m 2

0 y4+

+x2y2
(
3m2 −m 2

0

) ]2 −
[
2x2y2

(
m 2

0 −m2
)]2

}
. (8.41)

On the dipole axis (x = 0)

ρ (0, y, t)

ρ0

=
m

m0

,

(8.42)

whereas in the ‘equatorial plane’ (y = 0)

ρ (x, 0, t)

ρ0

=
(

m0

m

)3

. (8.43)

With increasing dipole moment m, the plasma density on the
dipole axis grows proportionally to the moment,

whereas that at the equatorial plane falls in inverse proportion to the
third power of the moment.

The result pertains to the small changes in the dipole moment.

The exception is formula (8.42).

It applies to any changes of the dipole moment.

The acceleration of plasma is perpendicular to the field lines and is
zero at the dipole axis.

Hence, if the plasma is motionless at the initial moment, arbitrary
changes of the dipole moment do not cause a plasma motion on the
dipole axis (v = 0).
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Plasma displacements in the vicinity of the dipole axis always re-
main small (δ ¿ 1) and the solution obtained applies.

(d) In the general case of arbitrarily large dipole moment changes,

the inertial effects resulting in plasma flows along the field
lines are of considerable importance

(Somov and Syrovatskii, 1972).

The solution of the problem requires the integration of the ordi-
nary differential equations that follows from Equation (8.21) and
the freezing-in Equation (8.14).

8.4.2 Axial-symmetric dipole fields

2D axial-symmetric problems can better suit the astrophysical applica-
tions of the second-type problem considered.

The ideal MHD equations are written, using the approximation of a
strong field and cold plasma, in spherical coordinates with due regard
for axial symmetry.

The role of the vector potential is fulfilled by the so-called stream
function

Φ (r, θ, t) = r sin θ Aϕ(r, θ, t) . (8.44)

Here Aϕ is the only non-zero ϕ-component of the vector-potential A.

In terms of the stream functions, the equations take the form

dv

dt
= ε−2K(r, θ, t)∇Φ ,

d Φ

dt
= 0 ,

dρ

dt
= −ρ div v ,

where

K(r, θ, t) =
jϕ(r, θ, t)

ρ r sin θ
(8.45)

(Somov and Syrovatskii, 1976).
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The equations formally coincide with the corresponding Equations (8.17),
(8.14) and (8.3) describing the plane flows in terms of the vector po-
tential.

As a zeroth approximation in the small parameter ε2, we may take,
for example, the dipole field.

In this case the stream function is of the form

Φ(0) (r, θ, t) = m(t)
sin2 θ

r
, (8.46)

where m(t) is a time-varying moment.

Let us imagine a magnetized ball of radius R(t) with the frozen
field B int(t).

The dipole moment of such a ball (a star or its envelope)

m(t) =
1

2
B int(t) R3(t) =

1

2π

(
B0 πR 2

0

)
R(t) . (8.47)

Here B0 and R0 are the values of B int(t) and R(t) at the initial time
t = 0.

The second equality takes account of conservation of the flux

Bint(t) πR 2(t)

through the ball.

Formula (8.47) shows that the dipole moment of the ball is propor-
tional to its radius R(t).

The solution to the problem (Somov and Syrovatskii, 1972a) shows
that as the dipole moment grows

the magnetic field rakes the plasma up to the dipole axis,
compresses it and simultaneously accelerates it along the
field lines.

The density at the axis grows in proportion to the dipole moment,
just as in the 2D plane case.
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∗ ∗ ∗

Envelopes of nova and supernova stars present a wide variety of
different shapes.

It is common to find either flattened or stretched envelopes.

Their surface brightness is maximal at the ends of the main axes of
an oval image.

This can sometimes be interpreted as a gaseous ring observed
almost from an edge.

However, if there is no luminous belt between the brightness max-
ima, then the remaining possibility is that single gaseous compressions
– condensations – exist in the envelope.

At the early stages of the expansion, they give the impression that
the nova ‘bifurcates’.

Suppose that the star’s magnetic field was a dipole one before the
explosion.

At the moment of the explosion a massive envelope with the
frozen-in field separated from the star and began to expand.

The expansion results in the growth of the dipole moment.

The field rakes the interstellar plasma surrounding the envelope,
as well as external layers of the envelope, up in the direction of the
dipole axis.

The process can be divided into two stages.

At the first one, the plasma is raked up by the field into the polar
regions, a growth in density and pressure at the dipole axis taking place.

At the second stage, the increased pressure hinders the growth of the
density, thus stopping compression, but the raking-up still continues.

The gas pressure gradient, arising ahead of the envelope, gives
rise to the motion along the axis.
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As a result, all the plasma is raked up into two compact conden-
sates.

∗ ∗ ∗

If a magnetized ball compresses, plasma flows from the poles to
the equatorial plane, thus forming a dense disk or ring.

This is the old problem of astrophysics concerning the compression
of a gravitating cloud with a frozen-in field.

Magnetic raking-up of plasma into dense disks can work in the at-
mospheres of collapsing stars.

8.5 Practice

Exercise 8.1. For a 3D field B, consider properties of the vector-
potential A which is determined in terms of two scalar functions α and
β:

A = α∇β +∇ψ . (8.48)

Here ψ is an arbitrary scalar function.

Answer.

Formula (8.48) permits B to be written as

B = ∇α×∇β . (8.49)

Hence
B · ∇α = 0 and B · ∇β = 0 . (8.50)

Thus ∇α and ∇β are perpendicular to the vector B, and functions α
and β are constant along B.

The surfaces α = const and β = const are orthogonal to their
gradients and tangent to B.

Hence
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a magnetic field line can be conveniently defined in terms
of a pair of values: α and β.

The functions α and β are referred to as Euler potentials or Clebsch
variables.

Advantage of these variables appears in the study of field line mo-
tions.

Exercise 8.2. Evaluate the typical value of the dipole moment for a
neutron star.

Answer.

Typical neutron stars have B ∼ 1012 G.

With the star radius R ∼ 10 km, it follows from formula (8.47) that

m ∼ 1030 G cm3 .

Some of neutron stars are the spinning super-magnetized neutron
stars created by supernova explosions.

The rotation of such stars called magnetars is slowing down so
rapidly that a super-strong field,

B ∼ 1015 G ,

could provide so fast braking.

For a magnetar
m ∼ 1033 G cm3 .

Exercise 8.3. Show that, prior to a solar flare, the magnetic energy
density in the corona is of about three orders of magnitude greater than
any of the other types.

Exercise 8.4. By using the method of conform mapping, deter-
mine the shape of a magnetic cavity, magnetosphere, created by a
plane dipole inside a perfectly conducting uniform plasma with a gas
pressure p0.

Answer.
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The conditions to be satisfied along the boundary S of the magnetic
cavity G are equality of magnetic and gas pressure,

B2

8π
S

= p0 = const , (8.51)

and tangency of the magnetic field,

B · n
S

= 0 . (8.52)

Condition (8.52) means that

Re F (z) = A (x, y) = const , (8.53)

where a complex potential F (z) is an analytic function within the re-
gion G except at the point z = 0 of the dipole m.

Let us assume that a conform transformation w = w(z) maps the
region G onto the circle

|w | ≤ 1

in an auxiliary complex plane

w = u + iv

so that the point z = 0 goes into the centre of the circle (Fig 8.8).

The boundary |w | = 1 is the field line S ′ of the solution in the
plane w, which we construct:

F (w) =
(
w − 1

w

)
. (8.54)

Note that we have used only the boundary condition (8.52).

The other boundary condition (8.51) allows us to find an unknown
transformation w = w(z).

The field lines are shown in Fig. 8.8b.

This solution can be used in the zero-order approximation to analyze
properties of plasma flows near collapsing or exploding astrophysical
objects with strong magnetic fields.
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Figure 8.8: The field lines of a dipole m inside: (a) the unit
circle in the plane w, (b) the cavity in a plasma of constant
pressure.

Exercise 8.5 To estimate a large-scale magnetic field in the corona
of an accretion disk, we have to find the structure of the field inside an
open magnetosphere created by a dipole field of a star and a regular
field generated by the disk (Somov et al., 2003).

Consider a 2D problem, demonstrated by Fig. 8.9, on the shape of a
magnetic cavity and the shape of the accretion disk under assumption
that this cavity, i.e. the magnetosphere, is surrounded by a perfectly
conducting uniform plasma with a gas pressure p0.

Discuss a way to solve the problem by using the method of conform
mapping.
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Figure 8.9: A model of the star magnetosphere with an accre-
tion disk; Γl and Γr are the cross sections of the disk. Su

and Sd together with Γl and Γr constitute the boundary of
the domain G in the plane z.


